J P Santerre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10834199/publications.pdf

Version: 2024-02-01

70	5,183	40	65
papers	citations	h-index	g-index
70	70	70	3970
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials, 2005, 26, 7457-7470.	11.4	639
2	Relation of Dental Composite Formulations To Their Degradation and the Release of Hydrolyzed Polymeric-Resin-Derived Products. Critical Reviews in Oral Biology and Medicine, 2001, 12, 136-151.	4.4	351
3	Cariogenic Bacteria Degrade Dental Resin Composites and Adhesives. Journal of Dental Research, 2013, 92, 989-994.	5.2	193
4	Salivary Esterase Activity and Its Association with the Biodegradation of Dental Composites. Journal of Dental Research, 2004, 83, 22-26.	5.2	191
5	Synthesis and characterization of a novel biodegradable antimicrobial polymer. Biomaterials, 2000, 21, 1235-1246.	11.4	183
6	Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes. Journal of Biomedical Materials Research Part B, 1994, 28, 1187-1199.	3.1	168
7	Enzyme-induced biodegradation of polycarbonate-polyurethanes: Dependence on hard-segment chemistry. Journal of Biomedical Materials Research Part B, 2001, 57, 597-611.	3.1	145
8	Biodegradation of Resin-Dentin Interfaces Increases Bacterial Microleakage. Journal of Dental Research, 2010, 89, 996-1001.	5.2	133
9	Enzyme-induced biodegradation of polycarbonate polyurethanes: Dependence on hard-segment concentration. Journal of Biomedical Materials Research Part B, 2001, 56, 516-528.	3.1	125
10	The influence of resin chemistry on a dental composite's biodegradation. Journal of Biomedical Materials Research Part B, 2004, 69A, 233-246.	3.1	124
11	Interactions between resin monomers and commercial composite resins with human saliva derived esterases. Biomaterials, 2002, 23, 1707-1719.	11.4	115
12	Effect of composite resin biodegradation products on oral streptococcal growth. Biomaterials, 2004, 25, 5467-5472.	11.4	111
13	Hydrolytic degradation of poly(carbonate)-urethanes by monocyte-derived macrophages. Biomaterials, 2001, 22, 3025-3033.	11.4	95
14	Mutual influence of cholesterol esterase and pseudocholinesterase on the biodegradation of dental composites. Biomaterials, 2004, 25, 1787-1793.	11.4	94
15	Effect of sulfonation of segmented polyurethanes on the transient adsorption of fibrinogen from plasma: Possible correlation with anticoagulant behavior. Journal of Biomedical Materials Research Part B, 1992, 26, 39-57.	3.1	90
16	Biodegradation of Commercial Dental Composites by Cholesterol Esterase. Journal of Dental Research, 1999, 78, 1459-1468.	5.2	90
17	Synthesis of surface-modifying macromolecules for use in segmented polyurethanes. Journal of Applied Polymer Science, 1996, 62, 1133-1145.	2.6	84
18	The effect of hard segment size on the hydrolytic stability of polyether-urea-urethanes when exposed to cholesterol esterase., 1997, 36, 223-232.		83

#	Article	IF	Citations
19	Study on surface modification by surface-modifying macromolecules and its applications in membrane-separation processes. Journal of Applied Polymer Science, 2003, 89, 2902-2916.	2.6	83
20	Enzyme-biomaterial interactions: Effect of biosystems on degradation of polyurethanes. Journal of Biomedical Materials Research Part B, 1993, 27, 97-109.	3.1	80
21	Macrophage phagocytosis of polyethylene particulatein vitro. , 1998, 39, 40-51.		76
22	Fibrinogen surface distribution correlates to platelet adhesion pattern on fluorinated surface-modified polyetherurethane. Biomaterials, 2005, 26, 7367-7376.	11.4	76
23	The effect of fluorinated surface modifying macromolecules on the surface morphology of polyethersulfone membranes. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 1085-1104.	3.5	74
24	Biological characterization of a novel biodegradable antimicrobial polymer synthesized with fluoroquinolones. Journal of Biomedical Materials Research Part B, 2002, 59, 35-45.	3.1	72
25	Enzyme induced biodegradation of polycarbonate-polyurethanes: dose dependence effect of cholesterol esterase. Biomaterials, 2003, 24, 2003-2011.	11.4	71
26	Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes. Biomaterials, 2003, 24, 2805-2819.	11.4	69
27	Fluorinated surfaceâ€modifying macromolecules: Modulating adhesive protein and platelet interactions on a polyetherâ€urethane. Journal of Biomedical Materials Research Part B, 2002, 60, 135-147.	3.1	67
28	UV photopolymerization behavior of dimethacrylate oligomers with camphorquinone/amine initiator system. Journal of Applied Polymer Science, 2001, 82, 1107-1117.	2.6	64
29	Model systems to assess the destructive potential of human neutrophils and monocyte-derived macrophages during the acute and chronic phases of inflammation. Journal of Biomedical Materials Research Part B, 2001, 54, 189-197.	3.1	63
30	Biodegradation of a dental composite by esterases: dependence on enzyme concentration and specificity. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 837-849.	3.5	63
31	Neutrophil-mediated degradation of segmented polyurethanes. Biomaterials, 1995, 16, 51-59.	11.4	59
32	Use of surface-modifying macromolecules to enhance the biostability of segmented polyurethanes., 1997, 35, 371-381.		59
33	Influence of silanated filler content on the biodegradation of bisGMA/TEGDMA dental composite resins. Journal of Biomedical Materials Research - Part A, 2007, 81A, 75-84.	4.0	57
34	Effect of filler content on the profile of released biodegradation products in micro-filled bis-GMA/TEGDMA dental composite resins. Biomaterials, 1999, 20, 1897-1908.	11.4	56
35	Influence of surface morphology and chemistry on the enzyme catalyzed biodegradation of polycarbonate-urethanes. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 463-483.	3.5	56
36	The enzymatic hydrolysis of a synthetic biomembrane: A new substrate for cholesterol and carboxyl esterases. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 169-179.	3.5	55

#	Article	IF	Citations
37	Differential synthesis of cholesterol esterase by monocyte-derived macrophages cultured on poly(ether or ester)-based poly(urethane)s., 1998, 39, 469-477.		55
38	Effect of surface-modifying macromolecules and solvent evaporation time on the performance of polyethersulfone membranes for the separation of chloroform/water mixtures by pervaporation. Journal of Applied Polymer Science, 1994, 54, 1937-1943.	2.6	51
39	Neutrophil-mediated biodegradation of medical implant materials. Journal of Cellular Physiology, 2001, 186, 95-103.	4.1	51
40	Application of macromolecular additives to reduce the hydrolytic degradation of polyurethanes by lysosomal enzymes. Biomaterials, 1997, 18, 37-45.	11.4	48
41	Biodegradation of a poly(ester)urea-urethane by cholesterol esterase: Isolation and identification of principal biodegradation products., 1997, 36, 407-417.		47
42	Effect of Fluorinated Surface-Modifying Macromolecules on the Molecular Surface Structure of a Polyether Poly(urethane urea). Macromolecules, 2002, 35, 924-933.	4.8	46
43	Elastase-induced hydrolysis of synthetic solid substrates: poly(ester-urea-urethane) and poly(ether-urea-urethane). Biomaterials, 1996, 17, 2381-2388.	11.4	45
44	The biodegradation of poly(urethane)s by the esterolytic activity of serine proteases and oxidative enzyme systems. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 699-713.	3.5	44
45	The influence of protein adsorption and surface modifying macromolecules on the hydrolytic degradation of a poly(ether–urethane) by cholesterol esterase. Biomaterials, 2003, 24, 121-130.	11.4	42
46	The effect of polyethylene particle chemistry on human monocyte-macrophage functionin vitro. Journal of Biomedical Materials Research Part B, 2000, 52, 239-245.	3.1	41
47	Monocyte/macrophage cytokine activity regulates vascular smooth muscle cell function within a degradable polyurethane scaffold. Acta Biomaterialia, 2014, 10, 1146-1155.	8.3	38
48	Immunomodulatory polymeric scaffold enhances extracellular matrix production in cell co-cultures under dynamic mechanical stimulation. Acta Biomaterialia, 2015, 24, 74-86.	8.3	36
49	Fibrinogen adsorption and platelet lysis characterization of fluorinated surface-modified polyetherurethanes. Journal of Biomedical Materials Research - Part A, 2007, 81A, 178-185.	4.0	35
50	Polyurethanes bearing pendant amino acids: Fibrinogen adsorption and coagulant properties. Journal of Biomedical Materials Research Part B, 1992, 26, 1003-1018.	3.1	34
51	Identification of biodegradation products formed by L-phenylalanine based segmented polyurethaneureas. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 691-711.	3.5	33
52	Photopolymerization behavior of di(meth)acrylate oligomers. Journal of Materials Science, 2001, 36, 3599-3605.	3.7	30
53	Utilization of Quinolone Drugs as Monomers:Â Characterization of the Synthesis Reaction Products for Poly(norfloxacin diisocyanatododecane polycaprolactone). Biomacromolecules, 2001, 2, 134-141.	5.4	28
54	Analysis of released products from oxidized ultra-high molecular weight polyethylene incubated with hydrogen peroxide and salt solutions. Biomaterials, 2000, 21, 851-861.	11.4	26

#	Article	IF	CITATIONS
55	High-performance liquid chromatographic separation and tandem mass spectrometric identification of breakdown products associated with the biological hydrolysis of a biomedical polyurethane. Biomedical Applications, 1997, 698, 69-80.	1.7	25
56	Methods for the covalent attachment of potentially bioactive moieties to sulfonated polyurethanes. Macromolecules, 1991, 24, 5497-5503.	4.8	22
57	Synthesis of Cholesterol Esterase by Monocyte-Derived Macrophages: A Potential Role in the Biodegradation of Poly(Urethane)s. Journal of Biomaterials Applications, 1999, 13, 187-205.	2.4	22
58	Platelet Adhesion and Fibrinogen Accretion on a Family of Elastin-Like Polypeptides. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 41-57.	3.5	21
59	Interaction of a block-co-polymeric biomaterial with immunoglobulin G modulates human monocytes towards a non-inflammatory phenotype. Acta Biomaterialia, 2015, 24, 35-43.	8.3	20
60	In Vivo Biodegradation of bisGMA and Urethane-Modified bisGMA-Based Resin Composite Materials. JDR Clinical and Translational Research, 2017, 2, 397-405.	1.9	16
61	Differential response to chemically altered polyethylene by activated mature human monocyte-derived macrophages. Biomaterials, 2002, 23, 3595-3602.	11.4	15
62	Surface modification of a polycarbonate-urethane using a vitamin-E-derivatized fluoroalkyl surface modifier. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 1411-1426.	3.5	15
63	Lysosomal Enzyme Release from Human Neutrophils Adherent to Foreign Material Surfaces: Enhanced Release of Elastase Activity. Cardiovascular Pathology, 1997, 6, 333-340.	1.6	14
64	Probing the Surface Chemistry of a Hydrated Segmented Polyurethane and a Comparison with Its Dry Surface Chemical Structure. Macromolecules, 2000, 33, 7321-7327.	4.8	14
65	The effect of phospholipids on the biodegradation of polyurethanes by lysosomal enzymes. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 779-795.	3.5	13
66	The role of the macrophage in periprosthetic bone loss. Canadian Journal of Surgery, 2000, 43, 173-9.	1.2	12
67	Effect of Phorbol Esters on the Macrophage-Mediated Biodegradation of Polyurethanes via Protein Kinase C Activation and Other Pathways. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 437-453.	3.5	11
68	Microstructure of polyurethane ionomers derivatized with dodecylamine and polyethylene oxide in the hard segment. Journal of Applied Polymer Science, 1994, 52, 515-523.	2.6	10
69	Commercial polyurethanes: The potential influence of auxiliary chemicals on the biodegradation process. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 729-749.	3.5	8
70	Biodegradation of a poly(ester)ureaâ€urethane by cholesterol esterase: Isolation and identification of principal biodegradation products. Journal of Biomedical Materials Research Part B, 1997, 36, 407-417.	3.1	1