
Sara A Love

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10834068/publications.pdf Version: 2024-02-01

SADA ALOVE

#	Article	IF	CITATIONS
1	Sex-Specific 99th Percentile Upper Reference Limits for High Sensitivity Cardiac Troponin Assays Derived Using a Universal Sample Bank. Clinical Chemistry, 2020, 66, 434-444.	3.2	80
2	Appropriateness of Cardiac Troponin Testing: Insights from the Use of TROPonin In Acute coronary syndromes (UTROPIA) Study. American Journal of Medicine, 2019, 132, 869-874.	1.5	8
3	Reply to letter by Trupp et al Clinical Biochemistry, 2018, 52, 174.	1.9	1
4	Heroinâ€related Deaths from the Hennepin County Medical Examiner's Office from 2004 Through 2015. Journal of Forensic Sciences, 2018, 63, 191-194.	1.6	5
5	Single High-Sensitivity Cardiac Troponin I to Rule Out Acute Myocardial Infarction. American Journal of Medicine, 2017, 130, 1076-1083.e1.	1.5	54
6	Rapid Rule-Out of Acute Myocardial Injury Using a Single High-Sensitivity Cardiac Troponin I Measurement. Clinical Chemistry, 2017, 63, 369-376.	3.2	45
7	Sex-specific 99th percentiles derived from the AACC Universal Sample Bank for the Roche Gen 5 cTnT assay: Comorbidities and statistical methods influence derivation of reference limits. Clinical Biochemistry, 2017, 50, 1073-1077.	1.9	29
8	Type 1 and 2 Myocardial Infarction and Myocardial Injury: Clinical Transition to High-Sensitivity Cardiac Troponin I. American Journal of Medicine, 2017, 130, 1431-1439.e4.	1.5	95
9	Diagnostic Performance of High Sensitivity Compared with Contemporary Cardiac Troponin I for the Diagnosis of Acute Myocardial Infarction. Clinical Chemistry, 2017, 63, 1594-1604.	3.2	36
10	Creation of a Universal Sample Bank for Determining the 99th Percentile for Cardiac Troponin Assays. journal of applied laboratory medicine, The, 2017, 1, 711-719.	1.3	20
11	Urine Creatinine Concentrations in Drug Monitoring Participants and Hospitalized Patients. Journal of Analytical Toxicology, 2016, 40, 659-662.	2.8	8
12	Incidence of Undetectable, Measurable, and Increased Cardiac Troponin I Concentrations Above the 99th Percentile Using a High-Sensitivity vs a Contemporary Assay in Patients Presenting to the Emergency Department. Clinical Chemistry, 2016, 62, 1115-1119.	3.2	29
13	Cardiac Troponin Testing Is Overused after the Rule-In or Rule-Out of Myocardial Infarction. Clinical Chemistry, 2015, 61, 436-438.	3.2	6
14	Electronic Medical Record–Based Performance Improvement Project to Document and Reduce Excessive Cardiac Troponin Testing. Clinical Chemistry, 2015, 61, 498-504.	3.2	13
15	Diagnosis of Type 1 and Type 2 Myocardial Infarction Using a High-Sensitivity Cardiac Troponin I Assay with Sex-Specific 99th Percentiles Based on the Third Universal Definition of Myocardial Infarction Classification System. Clinical Chemistry, 2015, 61, 657-663.	3.2	60
16	Toxicity of Nanoparticles to Brine Shrimp: An Introduction to Nanotoxicity and Interdisciplinary Science. Journal of Chemical Education, 2013, 90, 475-478.	2.3	38
17	Examining changes in cellular communication in neuroendocrine cells after noble metal nanoparticle exposure. Analyst, The, 2012, 137, 3004.	3.5	23
18	Development of screening assays for nanoparticle toxicity assessment in human blood: preliminary studies with charged Au nanoparticles. Nanomedicine, 2012, 7, 1355-1364.	3.3	47

SARA A LOVE

#	Article	IF	CITATIONS
19	Assessing Nanoparticle Toxicity. Annual Review of Analytical Chemistry, 2012, 5, 181-205.	5.4	309
20	Cholesterol effects on vesicle pools in chromaffin cells revealed by carbon-fiber microelectrode amperometry. Analytical and Bioanalytical Chemistry, 2011, 400, 2963-2971.	3.7	17
21	Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions. Analytical and Bioanalytical Chemistry, 2010, 398, 677-688.	3.7	30
22	Analytical methods to assess nanoparticle toxicity. Analyst, The, 2009, 134, 425.	3.5	367
23	Recent Advances in Nanomaterial Plasmonics: Fundamental Studies and Applications. Applied Spectroscopy, 2008, 62, 346A-362A.	2.2	24