
Yi-Ming Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1083281/publications.pdf Version: 2024-02-01

YI-MING YAN

#	Article	IF	CITATIONS
1	Spongeâ€Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance. Advanced Functional Materials, 2014, 24, 3917-3925.	14.9	239
2	Methanesulfonic acid-assisted synthesis of N/S co-doped hierarchically porous carbon for high performance supercapacitors. Journal of Power Sources, 2018, 387, 81-90.	7.8	158
3	Cu ₂ O Decorated with Cocatalyst MoS ₂ for Solar Hydrogen Production with Enhanced Efficiency under Visible Light. Journal of Physical Chemistry C, 2014, 118, 14238-14245.	3.1	138
4	Fluorine Doped Cagelike Carbon Electrocatalyst: An Insight into the Structure-Enhanced CO Selectivity for CO ₂ Reduction at High Overpotential. ACS Nano, 2020, 14, 2014-2023.	14.6	119
5	Composition dependent activity of Cu–Pt nanocrystals for electrochemical reduction of CO ₂ . Chemical Communications, 2015, 51, 1345-1348.	4.1	101
6	A bulky and flexible electrocatalyst for efficient hydrogen evolution based on the growth of MoS2 nanoparticles on carbon nanofiber foam. Journal of Materials Chemistry A, 2015, 3, 5041-5046.	10.3	100
7	Templated-preparation of a three-dimensional molybdenum phosphide sponge as a high performance electrode for hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 59-66.	10.3	95
8	Crystal plane-dependent electrocatalytic activity of Co3O4 toward oxygen evolution reaction. Catalysis Communications, 2015, 67, 78-82.	3.3	93
9	Adjusting the Coordination Environment of Mn Enhances Supercapacitor Performance of MnO ₂ . Advanced Energy Materials, 2021, 11, 2101412.	19.5	83
10	Rich bulk oxygen Vacancies-Engineered MnO2 with enhanced charge transfer kinetics for supercapacitor. Chemical Engineering Journal, 2021, 417, 129186.	12.7	83
11	Efficient Capacitive Deionization Using Natural Basswood-Derived, Freestanding, Hierarchically Porous Carbon Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 31260-31270.	8.0	81
12	Diethylenetriamine (DETA)-assisted anchoring of Co ₃ O ₄ nanorods on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 1761-1768.	10.3	79
13	Ternary polyaniline–graphene–TiO ₂ hybrid with enhanced activity for visible-light photo-electrocatalytic water oxidation. Journal of Materials Chemistry A, 2014, 2, 1068-1075.	10.3	68
14	Cu2+ intercalation activates bulk redox reactions of MnO2 for enhancing capacitive performance. Nano Energy, 2020, 74, 104891.	16.0	54
15	Beanpod-shaped Fe–C–N composite as promising ORR catalyst for fuel cells operated in neutral media. Journal of Materials Chemistry A, 2014, 2, 2623.	10.3	49
16	A high-performance electrocatalyst for oxygen evolution reactions based on electrochemical post-treatment of ultrathin carbon layer coated cobalt nanoparticles. Chemical Communications, 2014, 50, 13019-13022.	4.1	49
17	A novel electrocatalyst for oxygen evolution reaction based on rational anchoring of cobalt carbonate hydroxide hydrate on multiwall carbon nanotubes. Journal of Power Sources, 2015, 278, 464-472.	7.8	47
18	Structural engineering of N/S co-doped carbon material as high-performance electrode for supercapacitors. Electrochimica Acta, 2018, 274, 389-399.	5.2	46

YI-MING YAN

#	Article	IF	CITATIONS
19	A photoelectrochemical methanol fuel cell based on aligned TiO ₂ nanorods decorated graphene photoanode. Chemical Communications, 2016, 52, 2533-2536.	4.1	41
20	Synthesis of ultrathin and hierarchically porous carbon nanosheets based on interlayer-confined inorganic/organic coordination for high performance supercapacitors. Journal of Power Sources, 2019, 414, 383-392.	7.8	39
21	Efficient electrocatalytic reduction of CO2 on CuxO decorated graphene oxides: an insight into the role of multivalent Cu in selectivity and durability. Applied Catalysis B: Environmental, 2019, 259, 118044.	20.2	37
22	Carbon nanotubes in-situ cross-linking the activated carbon electrode for high-performance capacitive deionization. Separation and Purification Technology, 2020, 239, 116593.	7.9	35
23	Organic-inorganic hybrid binder enhances capacitive deionization performance of activated-carbon electrode. Carbon, 2017, 123, 574-582.	10.3	34
24	Mold-casting prepared free-standing activated carbon electrodes for capacitive deionization. Carbon, 2019, 149, 627-636.	10.3	32
25	Synthesis of MoP decorated carbon cloth as a binder-free electrode for hydrogen evolution. RSC Advances, 2016, 6, 68568-68573.	3.6	29
26	Ni-doping induced structure distortion of MnO2 for highly efficient Na+ storage. Chemical Engineering Journal, 2022, 429, 132521.	12.7	29
27	Enhanced capacitive deionization performance with carbon electrodes prepared with a modified evaporation casting method. Desalination, 2016, 386, 32-38.	8.2	23
28	Enhanced Electrosorption Ability of Carbon Nanocages as an Advanced Electrode Material for Capacitive Deionization. ACS Applied Materials & Interfaces, 2020, 12, 2180-2190.	8.0	22
29	Shearing Sulfur Edges of VS ₂ Electrocatalyst Enhances its Nitrogen Reduction Performance. Small, 2022, 18, e2106939.	10.0	19
30	Porous and high-strength graphitic carbon/SiC three-dimensional electrode for capacitive deionization and fuel cell applications. Journal of Materials Chemistry A, 2018, 6, 19210-19220.	10.3	16
31	Role of Ultrathin Carbon Shell in Enhancing the Performance of PtZn Intermetallic Nanoparticles as an Anode Electrocatalyst for Direct Formic Acid Fuel Cells. ChemElectroChem, 2019, 6, 2316-2323.	3.4	16
32	An ion-accumulating effect in a hollow carbon bowl electrode: understanding the structure-enhanced volumetric desalination capacity and ion transport kinetics in capacitive deionization. Journal of Materials Chemistry A, 2022, 10, 9988-9996.	10.3	15
33	Enhanced Electrocatalytic Oxidation of Formate via Introducing Surface Reactive Oxygen Species to a CeO ₂ Substrate. ACS Applied Materials & Interfaces, 2021, 13, 51643-51651.	8.0	14
34	Surface Reconstruction with a Sandwich-like C/Cu/C Catalyst for Selective and Stable CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2022, 14, 13261-13270.	8.0	14
35	Stretching the <i>c</i> -axis of the Mn ₃ O ₄ lattice with broadened ion transfer channels for enhanced Na-ion storage. Journal of Materials Chemistry A, 2021, 9, 23506-23514.	10.3	12
36	Efficient N ₂ reduction with the VS ₂ electrocatalyst: identifying the active sites and unraveling the reaction pathway. Journal of Materials Chemistry A, 2021, 9, 24985-24992.	10.3	12

YI-MING YAN

#	Article	IF	CITATIONS
37	In operando identification of the V ⁴⁺ -site-dependent nitrogen reduction reaction of VS _{<i>x</i>} . Journal of Materials Chemistry A, 2022, 10, 10219-10226.	10.3	11
38	Ultrathinâ€Carbon‣ayerâ€Protected PtCu Nanoparticles Encapsulated in Carbon Capsules: A Structure Engineering of the Anode Electrocatalyst for Direct Formic Acid Fuel Cells. Particle and Particle Systems Characterization, 2019, 36, 1900100.	2.3	10
39	Response to Comment on <i>Spongeâ€Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance</i> . Advanced Functional Materials, 2015, 25, 182-183.	14.9	8
40	Magnesium oxide anchored into a hollow carbon sphere realizes synergistic adsorption and activation of CO ₂ for electrochemical reduction. Chemical Communications, 2020, 56, 6062-6065.	4.1	6
41	Stabilization of Cu ⁺ via Strong Electronic Interaction for Selective and Stable CO ₂ Electroreduction. Angewandte Chemie, 2022, 134, .	2.0	6
42	Preparation of porous reduced graphene oxide using cellulose acetate for high performance capacitive desalination. RSC Advances, 2016, 6, 70532-70536.	3.6	5
43	Dual-directional electronic modulation of manganese oxides enabled by heterostructures for efficient sodium ion storage. Journal of Power Sources, 2022, 521, 230969.	7.8	5
44	Water Treatment: Spongeâ€Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance (Adv. Funct. Mater. 25/2014). Advanced Functional Materials, 2014, 24, 3838-3838.	14.9	3