
Chung-I Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1083179/publications.pdf Version: 2024-02-01

Снимс-1 Ми

#	Article	IF	CITATIONS
1	Homo-harringtonine, highly effective against coronaviruses, is safe in treating COVID-19 by nebulization. Science China Life Sciences, 2022, 65, 1263-1266.	4.9	7
2	The Runaway Evolution of SARS-CoV-2 Leading to the Highly Evolved Delta Strain. Molecular Biology and Evolution, 2022, 39, .	8.9	14
3	Two decades of suspect evidence for adaptive molecular evolution—negative selection confounding positive-selection signals. National Science Review, 2022, 9, .	9.5	10
4	The twin-beginnings of COVID-19 in Asia and Europe—one prevails quickly. National Science Review, 2022, 9, nwab223.	9.5	22
5	Evolution of coastal forests based on a full set of mangrove genomes. Nature Ecology and Evolution, 2022, 6, 738-749.	7.8	41
6	On the founder effect in COVID-19 outbreaks: how many infected travelers may have started them all?. National Science Review, 2021, 8, nwaa246.	9.5	27
7	A proposal for clinical trials of COVID-19 treatment using homo-harringtonine. National Science Review, 2021, 8, nwaa257.	9.5	9
8	A theoretical exploration of the origin and early evolution of a pandemic. Science Bulletin, 2021, 66, 1022-1029.	9.0	18
9	On the origin of SARS-CoV-2—The blind watchmaker argument. Science China Life Sciences, 2021, 64, 1560-1563.	4.9	18
10	Mutations Beget More Mutations—Rapid Evolution of Mutation Rate in Response to the Risk of Runaway Accumulation. Molecular Biology and Evolution, 2020, 37, 1007-1019.	8.9	10
11	Heightened protein-translation activities in mammalian cells and the disease/treatment implications. National Science Review, 2020, 7, 1851-1855.	9.5	7
12	Replies to the commentaries on the question of †Is it time to abandon the biological species concept?'. National Science Review, 2020, 7, 1407-1409.	9.5	4
13	Convergent adaptive evolution—how common, or how rare?. National Science Review, 2020, 7, 945-946.	9.5	4
14	Genes and speciation: is it time to abandon the biological species concept?. National Science Review, 2020, 7, 1387-1397.	9.5	34
15	Molecular Evolution in Small Steps under Prevailing Negative Selection: A Nearly Universal Rule of Codon Substitution. Genome Biology and Evolution, 2019, 11, 2702-2712.	2.5	10
16	Molecular Evolution in Large Steps—Codon Substitutions under Positive Selection. Molecular Biology and Evolution, 2019, 36, 1862-1873.	8.9	16
17	Small Segmental Duplications inDrosophila—High Rate of Emergence and Elimination. Genome Biology and Evolution, 2019, 11, 486-496.	2.5	1
18	Tumorigenesis as the Paradigm of Quasi-neutral Molecular Evolution. Molecular Biology and Evolution, 2019, 36, 1430-1441.	8.9	17

Снимс-I Wu

#	Article	IF	CITATIONS
19	Weak Regulation of Many Targets Is Cumulatively Powerful—A Reply to Seitz on microRNA Functionality. Molecular Biology and Evolution, 2019, 36, 1598-1599.	8.9	3
20	The heterogeneity of plasma miRNA profiles in hepatocellular carcinoma patients and the exploration of diagnostic circulating miRNAs for hepatocellular carcinoma. PLoS ONE, 2019, 14, e0211581.	2.5	15
21	Speciation with gene flow via cycles of isolation and migration: insights from multiple mangrove taxa. National Science Review, 2019, 6, 275-288.	9.5	97
22	Regulation of Large Number of Weak Targets—New Insights from Twin-microRNAs. Genome Biology and Evolution, 2018, 10, 1255-1264.	2.5	13
23	The Genotype–Phenotype Relationships in the Light of Natural Selection. Molecular Biology and Evolution, 2018, 35, 525-542.	8.9	16
24	On the low reproducibility of cancer studies. National Science Review, 2018, 5, 619-624.	9.5	38
25	Death of new microRNA genes inDrosophilavia gradual loss of fitness advantages. Genome Research, 2018, 28, 1309-1318.	5.5	11
26	On the possibility of death of new genes – evidence from the deletion of de novo microRNAs. BMC Genomics, 2018, 19, 388.	2.8	6
27	Direct measurement of pervasive weak repression by microRNAs and their role at the network level. BMC Genomics, 2018, 19, 362.	2.8	9
28	Genome-Wide Convergence during Evolution of Mangroves from Woody Plants. Molecular Biology and Evolution, 2017, 34, msw277.	8.9	43
29	Ultrasensitive and high-efficiency screen of de novo low-frequency mutations by o2n-seq. Nature Communications, 2017, 8, 15335.	12.8	20
30	A New Formulation of Random Genetic Drift and Its Application to the Evolution of Cell Populations. Molecular Biology and Evolution, 2017, 34, 2057-2064.	8.9	17
31	A Direct Test of Selection in Cell Populations Using the Diversity in Gene Expression within Tumors. Molecular Biology and Evolution, 2017, 34, 1730-1742.	8.9	9
32	Can genomic data alone tell us whether speciation happened with gene flow?. Molecular Ecology, 2017, 26, 2845-2849.	3.9	43
33	Weak Regulation of Many Targets Is Cumulatively Powerful—An Evolutionary Perspective on microRNA Functionality. Molecular Biology and Evolution, 2017, 34, 3041-3046.	8.9	28
34	Classifying the evolutionary and ecological features of neoplasms. Nature Reviews Cancer, 2017, 17, 605-619.	28.4	303
35	Redundant and incoherent regulations of multiple phenotypes suggest microRNAs' role in stability control. Genome Research, 2017, 27, 1665-1673.	5.5	40
36	What went wrong in science publishing?. National Science Review, 2017, 4, 518-519.	9.5	2

Снимс-I Wu

#	Article	IF	CITATIONS
37	The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. National Science Review, 2017, 4, 721-734.	9.5	118
38	Genomic sequencing identifies a few mutations driving the independent origin of primary liver tumors in a chronic hepatitis murine model. PLoS ONE, 2017, 12, e0187551.	2.5	1
39	Free-living human cells reconfigure their chromosomes in the evolution back to uni-cellularity. ELife, 2017, 6, .	6.0	31
40	Small RNA transcriptomes of mangroves evolve adaptively in extreme environments. Scientific Reports, 2016, 6, 27551.	3.3	18
41	Reminder to deposit DNA sequences. Science, 2016, 352, 780-780.	12.6	24
42	The Ecology and Evolution of Cancer: The Ultra-Microevolutionary Process. Annual Review of Genetics, 2016, 50, 347-369.	7.6	86
43	Using ultra-sensitive next generation sequencing to dissect DNA damage-induced mutagenesis. Scientific Reports, 2016, 6, 25310.	3.3	10
44	Ultra-precise detection of mutations by droplet-based amplification of circularized DNA. BMC Genomics, 2016, 17, 214.	2.8	11
45	Out of southern East Asia: the natural history of domestic dogs across the world. Cell Research, 2016, 26, 21-33.	12.0	271
46	Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6496-505.	7.1	313
47	Functional Conservation of Both CDS- and 3′-UTR-Located MicroRNA Binding Sites between Species. Molecular Biology and Evolution, 2015, 32, 623-628.	8.9	42
48	siRNAs with decreased off-target effect facilitate the identification of essential genes in cancer cells. Oncotarget, 2015, 6, 21603-21613.	1.8	6
49	New MicroRNAs in Drosophila—Birth, Death and Cycles of Adaptive Evolution. PLoS Genetics, 2014, 10, e1004096.	3.5	53
50	Genetic Convergence in the Adaptation of Dogs and Humans to the High-Altitude Environment of the Tibetan Plateau. Genome Biology and Evolution, 2014, 6, 2122-2128.	2.5	146
51	Reply to "Evolutionary flux of canonical microRNAs and mirtrons in Drosophila― Nature Genetics, 2010, 42, 9-10.	21.4	27
52	Evolution under canalization and the dual roles of microRNAs—A hypothesis. Genome Research, 2009, 19, 734-743.	5.5	160
53	PROPER CONTROL OF GENETIC BACKGROUND WITH PRECISE ALLELE SUBSTITUTION: A COMMENT ON COYNE AND ELWYN. Evolution; International Journal of Organic Evolution, 2006, 60, 623-625.	2.3	16

16.3 456

Снимс-I Wu

#	Article	IF	CITATIONS
55	A case for conservation. Nature, 2004, 428, 213-214.	27.8	12
56	Genetic Complexity Underlying Hybrid Male Sterility in Drosophila. Genetics, 2004, 166, 789-796.	2.9	8
57	Comment on "Chromosomal Speciation and Molecular Divergence-Accelerated Evolution in Rearranged Chromosomes". Science, 2003, 302, 988-988.	12.6	44
58	The genic view of the process of speciation. Journal of Evolutionary Biology, 2001, 14, 851-865.	1.7	1,092
59	Genes and speciation. Journal of Evolutionary Biology, 2001, 14, 889-891.	1.7	23
60	Positive and Negative Selection on the Human Genome. Genetics, 2001, 158, 1227-1234.	2.9	565
61	Modeling Linkage Disequilibrium Between a Polymorphic Marker Locus and a Locus Affecting Complex Dichotomous Traits in Natural Populations. Genetics, 2001, 158, 1785-1800.	2.9	8
62	Hitchhiking Under Positive Darwinian Selection. Genetics, 2000, 155, 1405-1413.	2.9	1,602
63	INCIPIENT SPECIATION BY SEXUAL ISOLATION IN <i>DROSOPHILA MELANOGASTER</i> : VARIATION IN MATING PREFERENCE AND CORRELATION BETWEEN SEXES. Evolution; International Journal of Organic Evolution, 1997, 51, 1175-1181.	2.3	95
64	Now blows the east wind. Nature, 1996, 380, 105-107.	27.8	4
65	A test of reciprocal X–Y interactions as a cause of hybrid sterility in Drosophila. Nature, 1992, 358, 751-753	27.8	74