Kouetsu Ogasawara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10824998/publications.pdf

Version: 2024-02-01

172457 223800 6,977 49 29 46 citations g-index h-index papers 50 50 50 9062 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Formation of carbon-added anatase-rich TiO2 layers on titanium and their antibacterial properties in visible light. Dental Materials, 2021, 37, e37-e46.	3.5	7
2	Palladium-Induced Temporal Internalization of MHC Class I Contributes to T Cell-Mediated Antigenicity. Frontiers in Immunology, 2021, 12, 736936.	4.8	0
3	COX-2 induces T cell accumulation and IFN- \hat{l}^3 production during the development of chromium allergy. Autoimmunity, 2019, 52, 228-234.	2.6	6
4	Visibleâ€lightâ€responsive antibacterial activity of Auâ€incorporated TiO ₂ layers formed on Ti–(0–10)at%Au alloys by air oxidation. Journal of Biomedical Materials Research - Part A, 2019, 107, 991-1000.	4.0	12
5	Antibacterial activity of Ag nanoparticle-containing hydroxyapatite powders in simulated body fluids with Cl ions. Materials Chemistry and Physics, 2019, 223, 473-478.	4.0	11
6	IFN- \hat{l}^3 is required for cytotoxic T cell-dependent cancer genome immunoediting. Nature Communications, 2017, 8, 14607.	12.8	125
7	In vitro evaluation of Ag-containing calcium phosphates: Effectiveness of Ag-incorporated \hat{l}^2 -tricalcium phosphate. Materials Science and Engineering C, 2017, 75, 926-933.	7.3	31
8	TRAV7-2*02 Expressing CD8+ T Cells Are Responsible for Palladium Allergy. International Journal of Molecular Sciences, 2017, 18, 1162.	4.1	10
9	Quantitative in vivo biocompatibility of new ultralowâ€nickel cobalt–chromium–molybdenum alloys. Journal of Orthopaedic Research, 2016, 34, 1505-1513.	2.3	13
10	The antihistamine olopatadine regulates T cell activation in palladium allergy. International Immunopharmacology, 2016, 35, 70-76.	3.8	8
11	Control of IFN-γ production and regulatory function by the inducible nuclear protein lκB-ζ in T cells. Journal of Leukocyte Biology, 2015, 98, 385-393.	3.3	16
12	Pathological Analysis of Metal Allergy to Metallic Materials. Springer Series in Biomaterials Science and Engineering, 2015, , 305-321.	1.0	0
13	Accumulation of Metal-Specific T Cells in Inflamed Skin in a Novel Murine Model of Chromium-Induced Allergic Contact Dermatitis. PLoS ONE, 2014, 9, e85983.	2.5	24
14	NKG2D+ IFN-Î ³ + CD8+ T Cells Are Responsible for Palladium Allergy. PLoS ONE, 2014, 9, e86810.	2.5	23
15	Effect of Silica Particle Size on Macrophage Inflammatory Responses. PLoS ONE, 2014, 9, e92634.	2.5	185
16	Accumulation of invariant NKT cells into inflamed skin in a novel murine model of nickel allergy. Cellular Immunology, 2013, 284, 163-171.	3.0	25
17	Fratricide of natural killer cells dressed with tumor-derived NKG2D ligand. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9421-9426.	7.1	58
18	NK-cell fratricide: Dynamic crosstalk between NK and cancer cells. Oncolmmunology, 2013, 2, e26529.	4.6	9

#	Article	IF	CITATIONS
19	Characterization of T Cell Receptors of Th1 Cells Infiltrating Inflamed Skin of a Novel Murine Model of Palladium-Induced Metal Allergy. PLoS ONE, 2013, 8, e76385.	2.5	24
20	Inhibitory Receptor Paired Ig-like Receptor B Is Exploited by <i>Staphylococcus aureus</i> for Virulence. Journal of Immunology, 2012, 189, 5903-5911.	0.8	45
21	A new method for quantitative analysis of the T cell receptor V region repertoires in healthy common marmosets by microplate hybridization assay. Journal of Immunological Methods, 2012, 384, 81-91.	1.4	7
22	The ECS(SPSB) E3 ubiquitin ligase is the master regulator of the lifetime of inducible nitric-oxide synthase. Biochemical and Biophysical Research Communications, 2011, 409, 46-51.	2.1	19
23	Increased positive selection pressure within the complementarity determining regions of the Tâ€cell receptor β gene in New World monkeys. American Journal of Primatology, 2011, 73, 1082-1092.	1.7	3
24	IFN-Î ³ production by lung NK cells is critical for the natural resistance to pulmonary metastasis of B16 melanoma in mice. Journal of Leukocyte Biology, 2011, 90, 777-785.	3.3	78
25	Regulation of Inducible Nitric-oxide Synthase by the SPRY Domain- and SOCS Box-containing Proteins. Journal of Biological Chemistry, 2011, 286, 9009-9019.	3.4	63
26	Natural killer (NK)–dendritic cell interactions generate MHC class II-dressed NK cells that regulate CD4 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18360-18365.	7.1	99
27	Intact NKG2D-Independent Function of NK Cells Chronically Stimulated with the NKG2D Ligand Rae-1. Journal of Immunology, 2010, 185, 157-165.	0.8	36
28	Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18187-18192.	7.1	114
29	TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood, 2005, 105, 2082-2089.	1.4	237
30	IFN-Â-mediated negative feedback regulation of NKT-cell function by CD94/NKG2. Blood, 2005, 106, 184-192.	1.4	56
31	Function of NKG2D in natural killer cell–mediated rejection of mouse bone marrow grafts. Nature Immunology, 2005, 6, 938-945.	14.5	150
32	NK cells in innate immunity. Current Opinion in Immunology, 2005, 17, 29-35.	5.5	261
33	NKG2D in NK and T Cell-Mediated Immunity. Journal of Clinical Immunology, 2005, 25, 534-540.	3.8	115
34	Engagement of NKG2D by Cognate Ligand or Antibody Alone Is Insufficient to Mediate Costimulation of Human and Mouse CD8+ T Cells. Journal of Immunology, 2005, 174, 1922-1931.	0.8	96
35	NK Activating Receptor, NKG2D. Journal of Oral Biosciences, 2005, 47, 1-5.	2.2	0
36	NK Activating Receptor, NKG2D-Function and Biological Roles Journal of Oral Biosciences, 2005, 47, 1-5.	2.2	0

3

#	Article	IF	Citations
37	Cutting Edge: Toll-Like Receptor Signaling in Macrophages Induces Ligands for the NKG2D Receptor. Journal of Immunology, 2004, 172, 2001-2005.	0.8	185
38	NKG2D Blockade Prevents Autoimmune Diabetes in NOD Mice. Immunity, 2004, 20, 757-767.	14.3	272
39	NKG2D triggers cytotoxicity in mouse NK cells lacking DAP12 or Syk family kinases. Nature Immunology, 2003, 4, 565-572.	14.5	166
40	Impairment of NK Cell Function by NKG2D Modulation in NOD Mice. Immunity, 2003, 18, 41-51.	14.3	252
41	NKG2D-mediated Natural Killer Cell Protection Against Cytomegalovirus Is Impaired by Viral gp40 Modulation of Retinoic Acid Early Inducible 1 Gene Molecules. Journal of Experimental Medicine, 2003, 197, 1245-1253.	8.5	248
42	Inducible Costimulator Costimulates Cytotoxic Activity and IFN-Î ³ Production in Activated Murine NK Cells. Journal of Immunology, 2002, 169, 3676-3685.	0.8	72
43	Requirement of the IFN- \hat{l} ±/ \hat{l} ² -induced CXCR3 chemokine signalling for CD8+T cell activation. Genes To Cells, 2002, 7, 309-320.	1.2	59
44	IRF Family of Transcription Factors as Regulators of Host Defense. Annual Review of Immunology, 2001, 19, 623-655.	21.8	1,408
45	Antiviral response by natural killer cells through TRAIL gene induction by IFN- $\hat{l}\pm/\hat{l}^2$. European Journal of Immunology, 2001, 31, 3138-3146.	2.9	241
46	Distinct and Essential Roles of Transcription Factors IRF-3 and IRF-7 in Response to Viruses for IFN- $\hat{l}\pm/\hat{l}^2$ Gene Induction. Immunity, 2000, 13, 539-548.	14.3	1,216
47	CD8+ T Cell–Mediated Skin Disease in Mice Lacking IRF-2, the Transcriptional Attenuator of Interferon-α/β Signaling. Immunity, 2000, 13, 643-655.	14.3	233
48	Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature, 1998, 391, 700-703.	27.8	330
49	Multistage Regulation of Th1-Type Immune Responses by the Transcription Factor IRF-1. Immunity, 1997, 6, 673-679.	14.3	323