
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1081725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Population Size Does Not Influence Mitochondrial Genetic Diversity in Animals. Science, 2006, 312, 570-572.	12.6	773
2	Strong Variations of Mitochondrial Mutation Rate across Mammalsthe Longevity Hypothesis. Molecular Biology and Evolution, 2007, 25, 120-130.	8.9	394
3	Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 3011-3019.	2.6	249
4	A comparative view of the evolution of grasses under domestication. New Phytologist, 2009, 183, 273-290.	7.3	193
5	GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates. Trends in Genetics, 2009, 25, 1-5.	6.7	167
6	Reference-Free Population Genomics from Next-Generation Transcriptome Data and the Vertebrate–Invertebrate Gap. PLoS Genetics, 2013, 9, e1003457.	3.5	157
7	Genetic Diversity and the Efficacy of Purifying Selection across Plant and Animal Species. Molecular Biology and Evolution, 2017, 34, 1417-1428.	8.9	142
8	Plant selfâ€incompatibility systems: a molecular evolutionary perspective. New Phytologist, 2005, 168, 61-69.	7.3	136
9	Inference of Distribution of Fitness Effects and Proportion of Adaptive Substitutions from Polymorphism Data. Genetics, 2017, 207, 1103-1119.	2.9	134
10	ADAPTATION AND MALADAPTATION IN SELFING AND OUTCROSSING SPECIES: NEW MUTATIONS VERSUS STANDING VARIATION. Evolution; International Journal of Organic Evolution, 2013, 67, 225-240.	2.3	128
11	Quantification of GC-biased gene conversion in the human genome. Genome Research, 2015, 25, 1215-1228.	5.5	127
12	Codon Usage Bias in Animals: Disentangling the Effects of Natural Selection, Effective Population Size, and GC-Biased Gene Conversion. Molecular Biology and Evolution, 2018, 35, 1092-1103.	8.9	111
13	Determination of Mitochondrial Genetic Diversity in Mammals. Genetics, 2008, 178, 351-361.	2.9	107
14	Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics. BMC Bioinformatics, 2006, 7, 188.	2.6	101
15	Patterns of Inbreeding Depression and Architecture of the Load in Subdivided Populations. Genetics, 2003, 165, 2193-2212.	2.9	100
16	Mating Systems and the Efficacy of Selection at the Molecular Level. Genetics, 2007, 177, 905-916.	2.9	98
17	Extreme Recombination Frequencies Shape Genome Variation and Evolution in the Honeybee, Apis mellifera. PLoS Genetics, 2015, 11, e1005189.	3.5	98
18	Mitochondrial whims: metabolic rate, longevity and the rate of molecular evolution. Biology Letters, 2009, 5, 413-416.	2.3	90

#	Article	IF	CITATIONS
19	Patterns and Evolution of Nucleotide Landscapes in Seed Plants. Plant Cell, 2012, 24, 1379-1397.	6.6	88
20	Maleâ€specific <scp>DNA</scp> markers provide genetic evidence of an <scp>XY</scp> chromosome system, a recombination arrest and allow the tracing of paternal lineages in date palm. New Phytologist, 2013, 197, 409-415.	7.3	88
21	When Genes Go to Sleep: The Population Genetic Consequences of Seed Dormancy and Monocarpic Perenniality. American Naturalist, 2004, 163, 295-311.	2.1	87
22	GC-Biased Gene Conversion and Selection Affect GC Content in the Oryza Genus (rice). Molecular Biology and Evolution, 2011, 28, 2695-2706.	8.9	83
23	GC content evolution in coding regions of angiosperm genomes: a unifying hypothesis. Trends in Genetics, 2014, 30, 263-270.	6.7	79
24	Pervasive hybridizations in the history of wheat relatives. Science Advances, 2019, 5, eaav9188.	10.3	79
25	Transcriptome population genomics reveals severe bottleneck and domestication cost in the <scp>A</scp> frican rice (<i><scp>O</scp>ryza glaberrima</i>). Molecular Ecology, 2014, 23, 2210-2227.	3.9	75
26	Balancing Selection in the Wild: Testing Population Genetics Theory of Self-Incompatibility in the Rare Species Brassica insularis. Genetics, 2005, 171, 279-289.	2.9	74
27	Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae). BMC Evolutionary Biology, 2011, 11, 181.	3.2	72
28	The Evolutionary Interplay between Adaptation and Self-Fertilization. Trends in Genetics, 2017, 33, 420-431.	6.7	64
29	Evolutionary transcriptomics reveals the origins of olives and the genomic changes associated with their domestication. Plant Journal, 2019, 100, 143-157.	5.7	64
30	Inbreeding Depression in Small Populations of Self-Incompatible Plants. Genetics, 2001, 159, 1217-1229.	2.9	63
31	The Red Queen Model of Recombination Hotspots Evolution in the Light of Archaic and Modern Human Genomes. PLoS Genetics, 2014, 10, e1004790.	3.5	62
32	COMPLEXITY, PLEIOTROPY, AND THE FITNESS EFFECT OF MUTATIONS. Evolution; International Journal of Organic Evolution, 2011, 65, 1559-1571.	2.3	57
33	Molecular Evolution of Freshwater Snails with Contrasting Mating Systems. Molecular Biology and Evolution, 2015, 32, 2403-2416.	8.9	54
34	GC-Biased Gene Conversion Impacts Ribosomal DNA Evolution in Vertebrates, Angiosperms, and Other Eukaryotes. Molecular Biology and Evolution, 2011, 28, 2561-2575.	8.9	53
35	A large set of 26 new reference transcriptomes dedicated to comparative population genomics in crops and wild relatives. Molecular Ecology Resources, 2017, 17, 565-580.	4.8	53
36	The Rate of Molecular Adaptation in a Changing Environment. Molecular Biology and Evolution, 2013, 30, 1292-1301.	8.9	51

#	Article	IF	CITATIONS
37	Genome Evolution in Outcrossing vs. Selfing vs. Asexual Species. Methods in Molecular Biology, 2019, 1910, 331-369.	0.9	51
38	Surprising Fitness Consequences of GC-Biased Gene Conversion: I. Mutation Load and Inbreeding Depression. Genetics, 2010, 185, 939-959.	2.9	49
39	Limits to Adaptation in Partially Selfing Species. Genetics, 2016, 203, 959-974.	2.9	47
40	Parental legacy, demography, and admixture influenced the evolution of the two subgenomes of the tetraploid Capsella bursa-pastoris (Brassicaceae). PLoS Genetics, 2019, 15, e1007949.	3.5	42
41	Hitchhiking of Deleterious Alleles and the Cost of Adaptation in Partially Selfing Species. Genetics, 2014, 196, 281-293.	2.9	40
42	Experimental Evidence for the Negative Effects of Self-Fertilization on the Adaptive Potential of Populations. Current Biology, 2017, 27, 237-242.	3.9	38
43	The influence of population structure on gene expression and flowering time variation in the ubiquitous weed <i><scp>C</scp>apsella bursaâ€pastoris</i> (Brassicaceae). Molecular Ecology, 2016, 25, 1106-1121.	3.9	36
44	Evolutionary forces affecting synonymous variations in plant genomes. PLoS Genetics, 2017, 13, e1006799.	3.5	36
45	Domestication rewired gene expression and nucleotide diversity patterns in tomato. Plant Journal, 2017, 91, 631-645.	5.7	34
46	Consequences of Low Mate Availability in the Rare Selfâ€Incompatible Species <i>Brassica insularis</i> . Conservation Biology, 2008, 22, 216-221.	4.7	33
47	Inference of Purifying and Positive Selection in Three Subspecies of Chimpanzees (Pan troglodytes) from Exome Sequencing. Genome Biology and Evolution, 2015, 7, 1122-1132.	2.5	33
48	Dioecy Is Associated with High Genetic Diversity and Adaptation Rates in the Plant Genus <i>Silene</i> . Molecular Biology and Evolution, 2021, 38, 805-818.	8.9	31
49	Extinction and fixation times with dominance and inbreeding. Theoretical Population Biology, 2012, 81, 310-316.	1.1	30
50	Towards the new normal: Transcriptomic convergence and genomic legacy of the two subgenomes of an allopolyploid weed (Capsella bursa-pastoris). PLoS Genetics, 2019, 15, e1008131.	3.5	27
51	From Drift to Draft: How Much Do Beneficial Mutations Actually Contribute to Predictions of Ohta's Slightly Deleterious Model of Molecular Evolution?. Genetics, 2020, 214, 1005-1018.	2.9	25
52	Using the Ornstein–Uhlenbeck process to model the evolution of interacting populations. Journal of Theoretical Biology, 2017, 429, 35-45.	1.7	18
53	Introns Structure Patterns of Variation in Nucleotide Composition in <i>Arabidopsis thaliana</i> and Rice Protein-Coding Genes. Genome Biology and Evolution, 2015, 7, 2913-2928.	2.5	17
54	Balancing selection in selfâ€fertilizing populations. Evolution; International Journal of Organic Evolution, 2021, 75, 1011-1029.	2.3	14

#	Article	IF	CITATIONS
55	Lethals in subdivided populations. Genetical Research, 2005, 86, 41-51.	0.9	13
56	Competitive ability of Capsella species with different mating systems and ploidy levels. Annals of Botany, 2018, 121, 1257-1264.	2.9	13
57	Hunting for Beneficial Mutations: Conditioning on SIFT Scores When Estimating the Distribution of Fitness Effect of New Mutations. Genome Biology and Evolution, 2022, 14, .	2.5	13
58	Interaction of climate, demography and genetics: a ten-year study of Brassica insularis, a narrow endemic Mediterranean species. Conservation Genetics, 2010, 11, 509-526.	1.5	12
59	Shift in ecological strategy helps marginal populations of shepherd's purse (<i>Capsella) Tj ETQq1 1 0.784314 rgl Sciences, 2020, 287, 20200463.</i>	3T /Overlo 2.6	ck 10 Tf 50 12
60	Surprising Fitness Consequences of GC-Biased Gene Conversion. II. Heterosis. Genetics, 2011, 187, 217-227.	2.9	10
61	Evolution of putative barrier loci at an intermediate stage of speciation with gene flow in campions (<i>Silene</i>). Molecular Ecology, 2020, 29, 3511-3525.	3.9	10
62	What does the distribution of fitness effects of new mutations reflect? Insights from plants. New Phytologist, 2022, 233, 1613-1619.	7.3	6
63	Estimating the Fitness Effect of Deleterious Mutations During the Two Phases of the Life Cycle: A New Method Applied to the Root-Rot Fungus <i>Heterobasidion parviporum</i> . Genetics, 2019, 211, 963-976.	2.9	5
64	The relative role of plasticity and demographic history in <i>Capsella bursa-pastoris</i> : a common garden experiment in Asia and Europe. AoB PLANTS, 2022, 14, .	2.3	4
65	Modeling a trait-dependent diversification process coupled with molecular evolution on a random species tree. Journal of Theoretical Biology, 2019, 461, 189-203.	1.7	3
66	Competitive ability depends on mating system and ploidy level across <i>Capsella</i> species. Annals of Botany, 2022, 129, 697-708.	2.9	2
67	The ecology of the genome and the dynamics of the biological dark matter. Journal of Theoretical Biology, 2021, 518, 110641.	1.7	0