Stephen P Deweerth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10814677/publications.pdf

Version: 2024-02-01

42 929
papers citations h-i

14 30
h-index g-index

42 42 all docs docs citations

42 times ranked 1200 citing authors

#	Article	IF	CITATIONS
1	Analyzing the Effects of Parameters for Tremor Modulation via Phase-Locked Electrical Stimulation on a Peripheral Nerve. Journal of Personalized Medicine, 2022, 12, 76.	2.5	2
2	Temporal and spatial dynamics of spinal sensorimotor processing in an intersegmental cutaneous nociceptive reflex. Journal of Neurophysiology, 2019, 122, 616-631.	1.8	4
3	Cutaneous sensory feedback from paw pads affects lateral balance control during split-belt locomotion in the cat. Journal of Experimental Biology, 2019, 222, .	1.7	14
4	Differential cardiovascular responses to cutaneous afferent subtypes in a nociceptive intersegmental spinal reflex. Scientific Reports, 2019, 9, 19049.	3.3	0
5	A Prototype of a Neural, Powered, Transtibial Prosthesis for the Cat: Benchtop Characterization. Frontiers in Neuroscience, 2018, 12, 471.	2.8	7
6	Closed-Loop Characterization of Neuronal Activation Using Electrical Stimulation and Optical Imaging. Processes, 2017, 5, 30.	2.8	3
7	Targeted Stimulation Using Differences in Activation Probability across the Strength–Duration Space. Processes, 2017, 5, 14.	2.8	3
8	Optimization of Stimulation Parameters for Targeted Activation of Multiple Neurons Using Closed-Loop Search Methods. Processes, 2017, 5, 81.	2.8	0
9	A three-dimensional image processing program for accurate, rapid, and semi-automated segmentation of neuronal somata with dense neurite outgrowth. Frontiers in Neuroanatomy, 2015, 9, 87.	1.7	7
10	A PDMS-Based Integrated Stretchable Microelectrode Array (isMEA) for Neural and Muscular Surface Interfacing. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7, 1-10.	4.0	115
11	Enabling techniques for in vitro studies on mammalian spinal locomotor mechanisms. Frontiers in Bioscience - Landmark, 2012, 17, 2158.	3.0	19
12	A low-cost, easy-fabricating stretchable microneedle-electrode array for intramuscular recording and stimulation. , 2011 , , .		3
13	Selective Stimulation of the Spinal Cord Surface Using a Stretchable Microelectrode Array. Frontiers in Neuroengineering, 2011, 4, 5.	4.8	19
14	Passive joint stiffness in the hip and knee increases the energy efficiency of leg swinging. Autonomous Robots, 2010, 29, 119-135.	4.8	12
15	Highâ€Density Stretchable Electronics: Toward an Integrated Multilayer Composite. Advanced Materials, 2010, 22, 4030-4033.	21.0	54
16	An Effective Liftâ€Off Method for Patterning Highâ€Density Gold Interconnects on an Elastomeric Substrate. Small, 2010, 6, 2847-2852.	10.0	44
17	A PDMS-Based Conical-Well Microelectrode Array for Surface Stimulation and Recording of Neural Tissues. IEEE Transactions on Biomedical Engineering, 2010, 57, 2485-2494.	4.2	32
18	A conformable microelectrode array (cMEA) with integrated electronics for peripheral nerve interfacing. , 2010, , .		7

#	Article	IF	CITATIONS
19	PDMS-based conformable microelectrode arrays with selectable novel 3-D microelectrode geometries for surface stimulation and recording., 2009, 2009, 1623-6.		9
20	Implementation of integratable PDMS-based conformable microelectrode arrays using a multilayer wiring interconnect technology., 2009, 2009, 1619-22.		6
21	A retrofitted neural recording system with a novel stimulation IC to monitor early neural responses from a stimulating electrode. Journal of Neuroscience Methods, 2009, 178, 99-102.	2.5	5
22	Muscle surface recording and stimulation using integrated PDMS-based microelectrode arrays: Recording-triggered stimulation for prosthetic purposes. , 2009, , .		5
23	A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomedical Microdevices, 2008, 10, 259-269.	2.8	87
24	Stimulation and recording of neural tissue, closing the loop on the artifact. , 2008, , .		1
25	Stimulus-Artifact Elimination in a Multi-Electrode System. IEEE Transactions on Biomedical Circuits and Systems, 2008, 2, 10-21.	4.0	83
26	Novel Nonlinear Elastic Actuators for Passively Controlling Robotic Joint Compliance. Journal of Mechanical Design, Transactions of the ASME, 2007, 129, 406-412.	2.9	86
27	Three-Dimensional Metal Transfer Micromolded Microelectrode Arrays (MEAS) for In-Vitro Brain Slice Recordings. , 2007, , .		12
28	A PDMS-based Elastic Multi-Electrode Array for Spinal Cord Surface Stimulation and its Electrode Modification to Enhance Performance. Materials Research Society Symposia Proceedings, 2007, 1009, 1.	0.1	1
29	Sensory Feedback in a Half-Center Oscillator Model. IEEE Transactions on Biomedical Engineering, 2007, 54, 193-204.	4.2	27
30	A comparative analysis of multi-conductance neuronal models in silico. Biological Cybernetics, 2007, 96, 181-194.	1.3	1
31	A comparison of resonance tuning with positive versus negative sensory feedback. Biological Cybernetics, 2007, 96, 603-614.	1.3	25
32	Two-Dimensional Variation of Bursting Properties in a Silicon-Neuron Half-Center Oscillator. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14, 281-289.	4.9	15
33	Effects of stance width on control gain in standing balance. , 2006, 2006, 4055-7.		4
34	Effects of stance width on control gain in standing balance. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	1
35	Passive Dynamics of a Hybrid Neuromechanical Joint Incorporating Living Muscle. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
36	Bifurcation of synchronous oscillations into torus in a system of two reciprocally inhibitory silicon neurons: Experimental observation and modeling. Chaos, 2004, 14, 995-1003.	2.5	4

3

#	Article	IF	CITATIONS
37	A Multiconductance Silicon Neuron With Biologically Matched Dynamics. IEEE Transactions on Biomedical Engineering, 2004, 51, 342-354.	4.2	106
38	A Tunable Voltage Correlator. Analog Integrated Circuits and Signal Processing, 2004, 39, 89-94.	1.4	8
39	A bifurcation of a synchronous oscillations into a torus in a system of two mutually inhibitory aVLSI neurons: experimental observation. Neurocomputing, 2003, 52-54, 691-698.	5.9	3
40	Modeling Alternation to Synchrony with Inhibitory Coupling: A Neuromorphic VLSI Approach. Neural Computation, 2000, 12, 2259-2278.	2.2	23
41	Converting spatially encoded sensory information to motor signals using analog VLSI circuits. Autonomous Robots, 1995, 2, 93-104.	4.8	4
42	Analog VLSI circuits for stimulus localization and centroid computation. International Journal of Computer Vision, 1992, 8, 191-202.	15.6	68