
Sanjay Phogat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10809384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vaccine Efficacy of ALVAC-HIV and Bivalent Subtype C gp120–MF59 in Adults. New England Journal of Medicine, 2021, 384, 1089-1100.	27.0	144
2	Late boosting of the RV144 regimen with AIDSVAX B/E and ALVAC-HIV in HIV-uninfected Thai volunteers: a double-blind, randomised controlled trial. Lancet HIV,the, 2020, 7, e238-e248.	4.7	33
3	Safety and immune responses after a 12-month booster in healthy HIV-uninfected adults in HVTN 100 in South Africa: AÂrandomized double-blind placebo-controlled trial of ALVAC-HIV (vCP2438) and bivalent subtype C gp120/MF59 vaccines. PLoS Medicine, 2020, 17, e1003038.	8.4	27
4	HIV-1 Vaccine Sequences Impact V1V2 Antibody Responses: A Comparison of Two Poxvirus Prime gp120 Boost Vaccine Regimens. Scientific Reports, 2020, 10, 2093.	3.3	17
5	Boosting with AIDSVAX B/E Enhances Env Constant Region 1 and 2 Antibody-Dependent Cellular Cytotoxicity Breadth and Potency. Journal of Virology, 2020, 94, .	3.4	19
6	HIV vaccine delayed boosting increases Env variable region 2–specific antibody effector functions. JCI Insight, 2020, 5, .	5.0	18
7	Immune correlates of the Thai RV144 HIV vaccine regimen in South Africa. Science Translational Medicine, 2019, 11, .	12.4	46
8	ALVAC-HIV B/C candidate HIV vaccine efficacy dependent on neutralization profile of challenge virus and adjuvant dose and type. PLoS Pathogens, 2019, 15, e1008121.	4.7	19
9	Priming with a Potent HIV-1 DNA Vaccine Frames the Quality of Immune Responses prior to a Poxvirus and Protein Boost. Journal of Virology, 2019, 93, .	3.4	25
10	Replication-Competent NYVAC-KC Yields Improved Immunogenicity to HIV-1 Antigens in Rhesus Macaques Compared to Nonreplicating NYVAC. Journal of Virology, 2019, 93, .	3.4	13
11	Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates. Journal of Virology, 2018, 92, .	3.4	10
12	Characterization of HIV-1 gp120 antibody specificities induced in anogenital secretions of RV144 vaccine recipients after late boost immunizations. PLoS ONE, 2018, 13, e0196397.	2.5	14
13	Subtype C ALVAC-HIV and bivalent subtype C gp120/MF59 HIV-1 vaccine in low-risk, HIV-uninfected, South African adults: a phase 1/2 trial. Lancet HIV,the, 2018, 5, e366-e378.	4.7	86
14	In vitro assessment of biological activity and stability of the ALVAC-HIV vaccine. Vaccine, 2018, 36, 5636-5644.	3.8	2
15	HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates, Journal of Virology, 2017, 91.	3.4	26
16	Randomized, Double-Blind Evaluation of Late Boost Strategies for HIV-Uninfected Vaccine Recipients in the RV144 HIV Vaccine Efficacy Trial. Journal of Infectious Diseases, 2017, 215, 1255-1263.	4.0	57
17	Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nature Communications, 2017, 8, 15711.	12.8	137
18	Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial. PLoS Pathogens, 2017, 13, e1006182.	4.7	38

SANJAY PHOGAT

#	Article	IF	CITATIONS
19	Boosting of ALVAC-SIV Vaccine-Primed Macaques with the CD4-SIVgp120 Fusion Protein Elicits Antibodies to V2 Associated with a Decreased Risk of SIVmac251 Acquisition. Journal of Immunology, 2016, 197, 2726-2737.	0.8	34
20	Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nature Medicine, 2016, 22, 762-770.	30.7	197
21	Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens. Journal of Virology, 2016, 90, 4133-4149.	3.4	22
22	Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost. Journal of Virology, 2015, 89, 6462-6480.	3.4	40
23	Vaccine-Induced Linear Epitope-Specific Antibodies to Simian Immunodeficiency Virus SIVmac239 Envelope Are Distinct from Those Induced to the Human Immunodeficiency Virus Type 1 Envelope in Nonhuman Primates. Journal of Virology, 2015, 89, 8643-8650.	3.4	42
24	Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates. Journal of Virology, 2015, 89, 8525-8539.	3.4	35
25	The Canarypox Virus Vector ALVAC Induces Distinct Cytokine Responses Compared to the Vaccinia Virus-Based Vectors MVA and NYVAC in Rhesus Monkeys. Journal of Virology, 2014, 88, 1809-1814.	3.4	62
26	Antibody Light-Chain-Restricted Recognition of the Site of Immune Pressure in the RV144 HIV-1 Vaccine Trial Is Phylogenetically Conserved. Immunity, 2014, 41, 909-918.	14.3	65
27	HVTN 097: Evaluation of the RV144 Vaccine Regimen in HIV Uninfected South African Adults. AIDS Research and Human Retroviruses, 2014, 30, A33-A34.	1.1	17
28	Design of an Escherichia coli Expressed HIV-1 gp120 Fragment Immunogen That Binds to b12 and Induces Broad and Potent Neutralizing Antibodies. Journal of Biological Chemistry, 2013, 288, 9815-9825.	3.4	28
29	Identification of an HIV-1 Clade A Envelope That Exhibits Broad Antigenicity and Neutralization Sensitivity and Elicits Antibodies Targeting Three Distinct Epitopes. Journal of Virology, 2013, 87, 5372-5383.	3.4	59
30	Subtle alteration of residues including N-linked glycans in V2 loop modulate HIV-1 neutralization by PG9 and PG16 monoclonal antibodies. Virology, 2012, 426, 34-41.	2.4	28
31	Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature, 2011, 477, 466-470.	27.8	1,397
32	Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors. Journal of Virology, 2011, 85, 9998-10009.	3.4	393
33	A single amino acid substitution in the C4 region in gp120 confers enhanced neutralization of HIV-1 by modulating CD4 binding sites and V3 loop. Virology, 2011, 418, 123-132.	2.4	17
34	Crystal Structure of Human Antibody 2909 Reveals Conserved Features of Quaternary Structure-Specific Antibodies That Potently Neutralize HIV-1. Journal of Virology, 2011, 85, 2524-2535.	3.4	46
35	Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature, 2011, 480, 336-343.	27.8	794
36	Immunotypes of a Quaternary Site of HIV-1 Vulnerability and Their Recognition by Antibodies. Journal of Virology, 2011, 85, 4578-4585.	3.4	43

Sanjay Phogat

#	Article	IF	CITATIONS
37	Crystal Structure of PG16 and Chimeric Dissection with Somatically Related PG9: Structure-Function Analysis of Two Quaternary-Specific Antibodies That Effectively Neutralize HIV-1. Journal of Virology, 2010, 84, 8098-8110.	3.4	209
38	Analysis of Neutralization Specificities in Polyclonal Sera Derived from Human Immunodeficiency Virus Type 1-Infected Individuals. Journal of Virology, 2009, 83, 1045-1059.	3.4	238
39	The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nature Reviews Microbiology, 2008, 6, 143-155.	28.6	298
40	Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2706-2711.	7.1	278
41	Broadly cross-reactive HIV neutralizing human monoclonal antibody Fab selected by sequential antigen panning of a phage display library. Journal of Immunological Methods, 2003, 283, 17-25.	1.4	75
42	A four-element based transposon system for allele specific tagging in plants—Theoretical considerations. Journal of Biosciences, 2000, 25, 57-63.	1.1	4