Gabriel M Rebeiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10806058/publications.pdf

Version: 2024-02-01

246 papers

11,705 citations

23567 58 h-index 46799 89 g-index

249 all docs

249 docs citations

times ranked

249

5357 citing authors

#	Article	IF	CITATIONS
1	0.13-\$mu\$m CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays. IEEE Journal of Solid-State Circuits, 2007, 42, 2535-2546.	5.4	330
2	A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a <inline-formula> <tex-math notation="LaTeX">\$2imes 2\$ </tex-math> </inline-formula> Beamformer Flip-Chip Unit Cell. IEEE Journal of Solid-State Circuits, 2018, 53, 1260-1274.	5.4	315
3	Tuning in to RF MEMS. IEEE Microwave Magazine, 2009, 10, 55-72.	0.8	267
4	A 77–81-GHz 16-Element Phased-Array Receiver With \$pm {hbox{50}}^{circ}\$ Beam Scanning for Advanced Automotive Radars. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2823-2832.	4.6	241
5	A 64-Element 28-GHz Phased-Array Transceiver With 52-dBm EIRP and 8–12-Gb/s 5G Link at 300 Meters Without Any Calibration. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 5796-5811.	4.6	220
6	Single-Ended and Differential Ka-Band BiCMOS Phased Array Front-Ends. IEEE Journal of Solid-State Circuits, 2008, 43, 2239-2250.	5.4	178
7	Design and Characterization of \$W\$-Band SiGe RFICs for Passive Millimeter-Wave Imaging. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 1420-1430.	4.6	176
8	Low-Loss Two-Pole Tunable Filters With Three Different Predefined Bandwidth Characteristics. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 1137-1148.	4.6	157
9	A 90 - 100-GHz 4 x 4 SiGe BiCMOS Polarimetric Transmit/Receive Phased Array With Simultaneous Receive-Beams Capabilities. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3099-3114.	4.6	157
10	An Improved Wideband All-Pass I/Q Network for Millimeter-Wave Phase Shifters. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 3431-3439.	4.6	148
11	High-Gain Yagi-Uda Antennas for Millimeter-Wave Switched-Beam Systems. IEEE Transactions on Antennas and Propagation, 2009, 57, 3672-3676.	5.1	145
12	An X- and Ku-Band 8-Element Phased-Array Receiver in $0.18-\text{mu}\{\text{hbox}\{m\}\}\$ SiGe BiCMOS Technology. IEEE Journal of Solid-State Circuits, 2008, 43, 1360-1371.	5.4	144
13	Single and Four-Element \$Ka\$-Band Transmit/Receive Phased-Array Silicon RFICs With 5-bit Amplitude and Phase Control. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 3534-3543.	4.6	138
14	A Millimeter-Wave (40–45 GHz) 16-Element Phased-Array Transmitter in 0.18-\$mu\$m SiGe BiCMOS Technology. IEEE Journal of Solid-State Circuits, 2009, 44, 1498-1509.	5.4	132
15	60-GHz 64- and 256-Elements Wafer-Scale Phased-Array Transmitters Using Full-Reticle and Subreticle Stitching Techniques. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 4701-4719.	4.6	132
16	An 8\$,imes,\$8 Butler Matrix in 0.13-\$mu{hbox {m}}\$ CMOS for 5–6-GHz Multibeam Applications. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 295-301.	4.6	130
17	High-Efficiency Angled-Dipole Antennas for Millimeter-Wave Phased Array Applications. IEEE Transactions on Antennas and Propagation, 2008, 56, 3136-3142.	5.1	123
18	\$W\$-Band Amplifiers With 6-dB Noise Figure and Milliwatt-Level 170–200-GHz Doublers in 45-nm CMOS. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 692-701.	4.6	112

#	Article	IF	CITATIONS
19	A Tunable Three-Pole 1.5–2.2-GHz Bandpass Filter With Bandwidth and Transmission Zero Control. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2872-2878.	4.6	110
20	A 44–46-GHz 16-Element SiGe BiCMOS High-Linearity Transmit/Receive Phased Array. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 730-742.	4.6	110
21	A Phased Array RFIC With Built-In Self-Test Capabilities. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 139-148.	4.6	110
22	High-\$Q\$ RF-MEMS 4–6-GHz Tunable Evanescent-Mode Cavity Filter. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 381-389.	4.6	105
23	A 108–114 GHz 4\$,imes,\$4 Wafer-Scale Phased Array Transmitter With High-Efficiency On-Chip Antennas. IEEE Journal of Solid-State Circuits, 2013, 48, 2041-2055.	5.4	102
24	A Near-Zero-Power Wake-Up Receiver Achieving â^'69-dBm Sensitivity. IEEE Journal of Solid-State Circuits, 2018, 53, 1640-1652.	5.4	101
25	Single- and Dual-Polarized Tunable Slot-Ring Antennas. IEEE Transactions on Antennas and Propagation, 2009, 57, 19-26.	5.1	100
26	A High-Reliability High-Linearity High-Power RF MEMS Metal-Contact Switch for DC–40-GHz Applications. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 3096-3112.	4.6	100
27	Corrugated Microstrip Coupled Lines for Constant Absolute Bandwidth Tunable Filters. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 956-963.	4.6	97
28	A 22â€"24 GHz 4-Element CMOS Phased Array With On-Chip Coupling Characterization. IEEE Journal of Solid-State Circuits, 2008, 43, 2134-2143.	5.4	95
29	A 0.32 THz SiGe 4x4 Imaging Array Using High-Efficiency On-Chip Antennas. IEEE Journal of Solid-State Circuits, 2013, 48, 2056-2066.	5.4	95
30	High-Performance 1.5–2.5-GHz RF-MEMS Tunable Filters for Wireless Applications. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 1629-1637.	4.6	94
31	X- and K-Band SiGe HBT LNAs With 1.2- and 2.2-dB Mean Noise Figures. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2381-2389.	4.6	93
32	An Eight-Element 370–410-GHz Phased-Array Transmitter in 45-nm CMOS SOI With Peak EIRP of 8–8.5 dBm. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 4241-4249.	4.6	88
33	A 76–84-GHz 16-Element Phased-Array Receiver With a Chip-Level Built-In Self-Test System. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3083-3098.	4.6	87
34	\$Ka\$-Band Low-Loss and High-Isolation Switch Design in 0.13-\$mu{hbox {m}}\$ CMOS. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 1364-1371.	4.6	86
35	Two- and Four-Pole Tunable 0.7–1.1-GHz Bandpass-to-Bandstop Filters With Bandwidth Control. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 457-463.	4.6	85
36	A 10–50-GHz CMOS Distributed Step Attenuator With Low Loss and Low Phase Imbalance. IEEE Journal of Solid-State Circuits, 2007, 42, 2547-2554.	5.4	84

#	Article	IF	Citations
37	Miniature Four-Way and Two-Way 24 GHz Wilkinson Power Dividers in 0.13 \$mu\$m CMOS. IEEE Microwave and Wireless Components Letters, 2007, 17, 658-660.	3.2	83
38	Tunable 1.55–2.1 GHz 4-Pole Elliptic Bandpass Filter With Bandwidth Control and \${> 50}~{hbox {dB}}\$ Rejection for Wireless Systems. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 117-124.	4.6	81
39	45-nm CMOS SOI Technology Characterization for Millimeter-Wave Applications. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 1301-1311.	4.6	80
40	Differentially-Fed Millimeter-Wave Yagi-Uda Antennas With Folded Dipole Feed. IEEE Transactions on Antennas and Propagation, 2010, 58, 966-969.	5.1	79
41	High-Reliability Miniature RF-MEMS Switched Capacitors. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 971-981.	4.6	78
42	A 65 GHz LNA/Phase Shifter With 4.3 dB NF Using 45 nm CMOS SOI. IEEE Microwave and Wireless Components Letters, 2012, 22, 530-532.	3.2	77
43	Millimeter-Wave Wafer-Scale Silicon BiCMOS Power Amplifiers Using Free-Space Power Combining. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 954-965.	4.6	76
44	A 5G 28-GHz Common-Leg T/R Front-End in 45-nm CMOS SOI With 3.7-dB NF and â^30-dBc EVM With 64-QAM/500-MBaud Modulation. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 318-331.	4.6	76
45	A Two-Pole Two-Zero Tunable Filter With Improved Linearity. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 830-839.	4.6	75
46	Compact Low-Loss Tunable \$X\$-Band Bandstop Filter With Miniature RF-MEMS Switches. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 1887-1895.	4.6	74
47	A 0.39–0.44 THz 2x4 Amplifier-Quadrupler Array With Peak EIRP of 3–4 dBm. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 4483-4491.	4.6	74
48	Miniature MEMS Switches for RF Applications. Journal of Microelectromechanical Systems, 2011, 20, 1324-1335.	2.5	72
49	A High-Linearity 76–85-GHz 16-Element 8-Transmit/8-Receive Phased-Array Chip With High Isolation and Flip-Chip Packaging. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2337-2356.	4.6	72
50	A Quasi Elliptic Function 1.75–2.25 GHz 3-Pole Bandpass Filter With Bandwidth Control. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 244-249.	4.6	71
51	A 110–134-GHz SiGe Amplifier With Peak Output Power of 100–120 mW. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2990-3000.	4.6	68
52	2 \$imes\$ 64-Element Dual-Polarized Dual-Beam Single-Aperture 28-GHz Phased Array With 2 \$imes\$ 30 Gb/s Links for 5G Polarization MIMO. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 3872-3884.	4.6	68
53	An Eight-Element 2–16-GHz Programmable Phased Array Receiver With One, Two, or Four Simultaneous Beams in SiGe BiCMOS. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 4585-4597.	4.6	67
54	A 25–75-MHz RF MEMS Tunable Filter. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 2399-2405.	4.6	65

#	Article	IF	CITATIONS
55	Low-Loss 4–6-GHz Tunable Filter With 3-Bit High-\$Q\$ Orthogonal Bias RF-MEMS Capacitance Network. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 2348-2355.	4.6	64
56	A Low-Power BiCMOS 4-Element Phased Array Receiver for 76–84 GHz Radars and Communication Systems. IEEE Journal of Solid-State Circuits, 2012, 47, 359-367.	5 . 4	64
57	High-Efficiency Elliptical Slot Antennas With Quartz Superstrates for Silicon RFICs. IEEE Transactions on Antennas and Propagation, 2012, 60, 5010-5020.	5.1	64
58	140–220 GHz SPST and SPDT Switches in 45 nm CMOS SOI. IEEE Microwave and Wireless Components Letters, 2012, 22, 412-414.	3.2	63
59	A 2-Bit, 24 dBm, Millimeter-Wave SOI CMOS Power-DAC Cell for Watt-Level High-Efficiency, Fully Digital m-ary QAM Transmitters. IEEE Journal of Solid-State Circuits, 2013, 48, 1126-1137.	5.4	59
60	Random Feeding Networks for Reducing the Number of Phase Shifters in Limited-Scan Arrays. IEEE Transactions on Antennas and Propagation, 2016, 64, 4648-4658.	5.1	58
61	Three-Pole 1.3–2.4-GHz Diplexer and 1.1–2.45-GHz Dual-Band Filter With Common Resonator Topology and Flexible Tuning Capabilities. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3613-3624.	4.6	55
62	A 24-43 GHz LNA with 3.1-3.7 dB Noise Figure and Embedded 3-Pole Elliptic High-Pass Response for 5G Applications in 22 nm FDSOI. , 2019, , .		53
63	A 22–44-GHz Phased-Array Receive Beamformer in 45-nm CMOS SOI for 5G Applications With 3–3.6-dB NF. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 4765-4774.	4.6	53
64	Tunable 1.25–2.1-GHz 4-Pole Bandpass Filter With Intrinsic Transmission Zero Tuning. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1569-1578.	4.6	52
65	A \$Ku\$-Band Two-Antenna Four-Simultaneous Beams SiGe BiCMOS Phased Array Receiver. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 771-780.	4.6	51
66	Lumped-Element Fully Tunable Bandstop Filters for Cognitive Radio Applications. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2461-2468.	4.6	50
67	A High-Linearity \$X\$-Band Four-Element Phased-Array Receiver: CMOS Chip and Packaging. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2064-2072.	4.6	50
68	Dual-Polarized Sinuous Antennas on Extended Hemispherical Silicon Lenses. IEEE Transactions on Antennas and Propagation, 2012, 60, 4082-4091.	5.1	50
69	A 90–100-GHz Phased-Array Transmit/Receive Silicon RFIC Module With Built-In Self-Test. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3774-3782.	4.6	48
70	Wideband 23.5–29.5-GHz Phased Arrays for Multistandard 5G Applications and Carrier Aggregation. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 235-247.	4.6	48
71	On-Chip Slot-Ring and High-Gain Horn Antennas for Millimeter-Wave Wafer-Scale Silicon Systems. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 1963-1972.	4.6	47
72	Bandpass-to-Bandstop Reconfigurable Tunable Filters with Frequency and Bandwidth Controls. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 2288-2297.	4.6	47

#	Article	IF	CITATIONS
73	A 4-18-GHz reconfigurable RF MEMS matching network for power amplifier applications. International Journal of RF and Microwave Computer-Aided Engineering, 2004, 14, 356-372.	1.2	46
74	RF MEMS Metal-Contact Switches With mN-Contact and Restoring Forces and Low Process Sensitivity. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 1230-1237.	4.6	46
75	A High-Power Packaged Four-Element \$X\$-Band Phased-Array Transmitter in \${hbox{0.13-}}mu{hbox {m}}\$ CMOS for Radar and Communication Systems. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3060-3071.	4.6	46
76	A 37–42-GHz 8 × 8 Phased-Array With 48–51-dBm EIRP, 64–QAM 30-Gb/s Data Rates, and EVM Analysis Versus Channel RMS Errors. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 4753-4764.	4.6	45
77	Ka-Band SiGe HBT Low Noise Amplifier Design for Simultaneous Noise and Input Power Matching. IEEE Microwave and Wireless Components Letters, 2007, 17, 891-893.	3.2	44
78	$0.7\hat{a}\in$ "1.0-GHz Reconfigurable Bandpass-to-Bandstop Filter With Selectable 2- and 4-Pole Responses. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2626-2632.	4.6	44
79	A High-Power Temperature-Stable Electrostatic RF MEMS Capacitive Switch Based on a Thermal Buckle-Beam Design. Journal of Microelectromechanical Systems, 2010, 19, 816-826.	2.5	43
80	High-\$Q\$ 4–6-GHz Suspended Stripline RF MEMS Tunable Filter With Bandwidth Control. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2469-2476.	4.6	42
81	A Q -Band Four-Element Phased-Array Front-End Receiver With Integrated Wilkinson Power Combiners in 0.18-\$mu{{hbox{m}}}\$ SiGe BiCMOS Technology. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 2046-2053.	4.6	39
82	Differential Microstrip and Slot-Ring Antennas for Millimeter-Wave Silicon Systems. IEEE Transactions on Antennas and Propagation, 2012, 60, 2611-2619.	5.1	39
83	Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA. IEEE Microwave and Wireless Components Letters, 2008, 18, 272-274.	3.2	38
84	0.73–1.03-GHz Tunable Bandpass Filter With a Reconfigurable 2/3/4-Pole Response. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 290-296.	4.6	38
85	Compact High-Power SPST and SP4T RF MEMS Metal-Contact Switches. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 297-305.	4.6	38
86	A Simple and Effective Method for 1.9–3.4-GHz Tunable Diplexer With Compact Size and Constant Fractional Bandwidth. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 436-449.	4.6	38
87	A 70–80-GHz SiGe Amplifier With Peak Output Power of 27.3 dBm. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 2039-2049.	4.6	37
88	Silicon RFICs for phased arrays. IEEE Microwave Magazine, 2009, 10, 96-103.	0.8	36
89	A 1024-Element Ku-Band SATCOM Dual-Polarized Receiver With > 10-dB/K G/T and Embedded Transmit Rejection Filter. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3484-3495.	4.6	36
90	A 1.4–2.3-GHz Tunable Diplexer Based on Reconfigurable Matching Networks. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1595-1602.	4.6	35

#	Article	IF	Citations
91	Limited Scan-Angle Phased Arrays Using Randomly Grouped Subarrays and Reduced Number of Phase Shifters. IEEE Transactions on Antennas and Propagation, 2020, 68, 70-80.	5.1	35
92	A 40-50-GHz SiGe $1:8$ differential power divider using shielded broadside-coupled striplines. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 1575-1581.	4.6	34
93	A 1024-Element Ku-Band SATCOM Phased-Array Transmitter With 45-dBW Single-Polarization EIRP. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 4157-4168.	4.6	34
94	Low Complexity 54–63-GHz Transmit/Receive 64- and 128-element 2-D-Scanning Phased-Arrays on Multilayer Organic Substrates With 64-QAM 30-Gbps Data Rates. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 5268-5281.	4.6	33
95	Higher Order Cochlea-Like Channelizing Filters. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 1675-1683.	4.6	32
96	A Shallow Varactor-Tuned Cavity-Backed Slot Antenna With a 1.9:1 Tuning Range. IEEE Transactions on Antennas and Propagation, 2010, 58, 633-639.	5.1	32
97	A 3 G-Bit/s W-band SiGe ASK receiver with a high-efficiency on-chip electromagnetically-coupled antenna. , 2010, , .		31
98	A SiGe Multiplier Array With Output Power of 5–8 dBm at 200–230 GHz. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 2050-2058.	4.6	31
99	An Electronically-Scanned 1.8–2.1 GHz Base-Station Antenna Using Packaged High-Reliability RF MEMS Phase Shifters. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 979-985.	4.6	30
100	A 0.97–1.53-GHz Tunable Four-Pole Bandpass Filter With Four Transmission Zeroes. IEEE Microwave and Wireless Components Letters, 2019, 29, 195-197.	3.2	30
101	Thin-Film Aluminum RF MEMS Switched Capacitors With Stress Tolerance and Temperature Stability. Journal of Microelectromechanical Systems, 2011, 20, 193-203.	2.5	28
102	A 200-245 GHz Balanced Frequency Doubler with Peak Output Power of +2 dBm., 2013,,.		28
103	28 GHz 5G-Based Phased-Arrays for UAV Detection and Automotive Traffic-Monitoring Radars. , 2018, , .		28
104	A <inline-formula> <tex-math notation="LaTeX">\${D}\$ </tex-math> </inline-formula> -Band Digital Transmitter with 64-QAM and OFDM Free-Space Constellation Formation. IEEE Journal of Solid-State Circuits, 2018, 53, 2012-2022.	5.4	28
105	RF MEMS impedance tuners for 6–24 GHz applications. International Journal of RF and Microwave Computer-Aided Engineering, 2007, 17, 265-278.	1.2	27
106	High-Reliability RF-MEMS Switched Capacitors With Digital and Analog Tuning Characteristics. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 2692-2701.	4.6	27
107	A 60 GHz single-chip 256-element wafer-scale phased array with EIRP of 45 dBm using sub-reticle stitching. , 2015 , , .		26
108	Cochlea-Based RF Channelizing Filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55, 969-979.	5.4	25

#	Article	IF	Citations
109	A 4-channel 24–27 GHz CMOS differential phased-array receiver. , 2009, , .		25
110	RF MEMS Capacitive Switches for Wide Temperature Range Applications Using a Standard Thin-Film Process. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 1746-1752.	4.6	25
111	Tunable 4-Pole Noncontiguous 0.7–2.1-GHz Bandpass Filters Based on Dual Zero-Value Couplings. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1579-1586.	4.6	25
112	Transmission of Signals With Complex Constellations Using Millimeter-Wave Spatially Power-Combined CMOS Power Amplifiers and Digital Predistortion. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 2364-2374.	4.6	25
113	A High Power Stress-Gradient Resilient RF MEMS Capacitive Switch. Journal of Microelectromechanical Systems, 2015, 24, 599-607.	2.5	25
114	\${W}\$ -Band Direct-Modulation >20-Gb/s Transmit and Receive Building Blocks in 32-nm SOI CMOS. IEEE Journal of Solid-State Circuits, 2017, 52, 2277-2291.	5.4	25
115	A Very Low Phase-Noise Transformer-Coupled Oscillator and PLL for 5G Communications in 0.12 \$mu\$ m SiGe BiCMOS. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 1529-1541.	4.6	25
116	A High-Power 24–40-GHz Transmit–Receive Front End for Phased Arrays in 45-nm CMOS SOI. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 4775-4786.	4.6	25
117	A 256-Element Ku-Band Polarization Agile SATCOM Transmit Phased Array With Wide-Scan Angles, Low Cross Polarization, Deep Nulls, and 36.5-dBW EIRP per Polarization. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 2594-2608.	4.6	25
118	RF MEMS, BST, and GaAs varactor system-level response in complex modulation systems. International Journal of RF and Microwave Computer-Aided Engineering, 2008, 18, 86-98.	1.2	24
119	Tunable 500–1200-MHz Dual-Band and Wide Bandwidth Notch Filters Using RF Transformers. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1854-1862.	4.6	24
120	A 28 GHz transceiver chip for 5G beamforming data links in SiGe BiCMOS., 2017,,.		24
121	Third-Order Intermodulation Effects and System Sensitivity Degradation in Receive-Mode 5G Phased Arrays in the Presence of Multiple Interferers. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 5780-5795.	4.6	24
122	A 256-Element Dual-Beam Polarization-Agile SATCOM <i>Ku</i> -Band Phased-Array With 5-dB/K G/T. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 4986-4994.	4.6	24
123	A W-Band LNA/Phase Shifter With 5-dB NF and 24-mW Power Consumption in 32-nm CMOS SOI. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 1973-1982.	4.6	23
124	An Eight-Element 140-GHz Wafer-Scale IF Beamforming Phased-Array Receiver With 64-QAM Operation in CMOS RFSOI. IEEE Journal of Solid-State Circuits, 2022, 57, 385-399.	5.4	23
125	Design and Analysis of a Low-Power 3–6-Gb/s 55-GHz OOK Receiver With High-Temperature Performance. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 3263-3271.	4.6	22
126	A 2–15-GHz Accurate Built-in-Self-Test System for Wideband Phased Arrays Using Self-Correcting Eight-State \$I/Q\$ Mixers. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 4250-4261.	4.6	22

#	Article	IF	CITATIONS
127	Interwoven Feeding Networks With Aperture Sinc-Distribution for Limited-Scan Phased Arrays and Reduced Number of Phase Shifters. IEEE Transactions on Antennas and Propagation, 2018, 66, 2401-2413.	5.1	22
128	A scalable 64-element 28 ghz phased-array transceiver with 50 dbm eirp and 8-12 gbps 5g link at 300 meters without any calibration. , 2018 , , .		22
129	High Efficiency <i>D</i> Band Multiway Power Combined Amplifiers With 17.5–19-dBm Psat and 14.2–12.1% Peak PAE in 45-nm CMOS RFSOI. IEEE Journal of Solid-State Circuits, 2022, 57, 1332-1343.	5.4	22
130	A Two-Channel 8–20-GHz SiGe BiCMOS Receiver With Selectable IFs for Multibeam Phased-Array Digital Beamforming Applications. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 716-726.	4.6	21
131	A SiGe BiCMOS W-Band LNA with 5.1 dB NF at 90 GHz. , 2013, , .		21
132	A 60 GHz 64-element phased-array beam-pointing communication system for 5G 100 meter links up to 2 Gbps. , 2016, , .		21
133	A zipper RF MEMS tunable capacitor with interdigitated RF and actuation electrodes. Journal of Micromechanics and Microengineering, 2010, 20, 035014.	2.6	20
134	Compact Self-Shielded 2–3 GHz High-Q Coaxial Fixed and Tunable Filters. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 3370-3379.	4.6	20
135	A Novel Approach to Beam Steering Using Arrays Composed of Multiple Unique Radiating Modes. IEEE Transactions on Antennas and Propagation, 2015, 63, 2932-2945.	5.1	20
136	Ka-Band BiCMOS 4-Bit Phase Shifter with Integrated LNA for Phased Array T/R Modules. , 2007, , .		19
137	Low-loss 0.13-µm CMOS 50 – 70 GHz SPDT and SP4T switches. , 2009, , .		19
138	Tunable 4-Pole Dual-Notch Filters for Cognitive Radios and Carrier Aggregation Systems. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1308-1314.	4.6	19
139	A 24-29.5 GHz 256-Element 5G Phased-Array with 65.5 dBm Peak EIRP and 256-QAM Modulation. , 2020, , .		19
140	A Multi-Band 16–52-GHz Transmit Phased Array Employing 4 × 1 Beamforming IC With 14–15.4-dBm ⟨i⟩P⟨/i⟩ ⟨sub⟩sat⟨/sub⟩ for 5G NR FR2 Operation. IEEE Journal of Solid-State Circuits, 2022, 57, 1280-1290.	5.4	19
141	A Multiband/Multistandard 15–57 GHz Receive Phased-Array Module Based on 4 × 1 Beamformer IC and Supporting 5G NR FR2 Operation. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 1732-1744.	4.6	19
142	An X- and Ku-Band 8-Element Linear Phased Array Receiver. , 2007, , .		17
143	High-Q RF MEMS capacitor with digital/analog tuning capabilities. , 2008, , .		17
144	A 76–84 GHz 16-element phased array receiver with a chip-level built-in-self-test system. , 2012, , .		17

#	Article	IF	CITATIONS
145	A Low-Power 136-GHz SiGe Total Power Radiometer With NETD of 0.25 K. IEEE Transactions on Microwave Theory and Techniques, 2016, , 1-9.	4.6	17
146	A Compact pMOS Stacked-SOI Distributed Power Amplifier With Over 100-GHz Bandwidth and Up to 22-dBm Saturated Output Power. IEEE Solid-State Circuits Letters, 2019, 2, 9-12.	2.0	17
147	An Eight-Element 140 GHz Wafer-Scale Phased-Array Transmitter with 32 dBm Peak EIRP and > 16 Gbps 16QAM and 64QAM Operation. , 2021, , .		17
148	Millimeter-Wave and THz Circuits in 45-nm SOI CMOS. , 2011, , .		16
149	High-Power RF MEMS Switched Capacitors Using a Thick Metal Process. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 455-463.	4.6	16
150	Millimeter-wave large-scale phased-arrays for 5G systems. , 2015, , .		16
151	A 24 GHz 6-Bit CMOS Phased-Array Receiver. IEEE Microwave and Wireless Components Letters, 2008, 18, 422-424.	3.2	15
152	Design of high-efficiency millimeter-wave microstrip antennas for silicon RFIC applications. , 2011, , .		15
153	A Packaged 0.01–26-GHz Single-Chip SiGe Reflectometer for Two-Port Vector Network Analyzers. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 1794-1808.	4.6	15
154	An Eight-Element 136–147 GHz Wafer-Scale Phased-Array Transmitter With 32 dBm Peak EIRP and >16 Gbps 16QAM and 64QAM Operation. IEEE Journal of Solid-State Circuits, 2022, 57, 1635-1648.	5.4	15
155	A 4-Bit Passive Phase Shifter for Automotive Radar Applications in 0.13 & amp;#956;m CMOS., 2009,,.		14
156	High-efficiency silicon RFIC millimeter-wave elliptical slot-antenna with a quartz lens. , $2011, \ldots$		14
157	A Low-Noise 150–210 GHz Detector in 45 nm CMOS SOI. IEEE Microwave and Wireless Components Letters, 2013, 23, 309-311.	3.2	14
158	A 1.26-3.3 GHz Tunable Triplexer With Compact Size and Constant Bandwidth. IEEE Microwave and Wireless Components Letters, 2016, 26, 786-788.	3.2	14
159	75& $\#x2013$; 85 GHz flip-chip phased array RFIC with simultaneous 8-transmit and 8-receive paths for automotive radar applications. , 2013 , , .		13
160	Ka-Band Low-Loss and High-Isolation 0.13 <i>$\hat{l}^{1}/4$</i> m CMOS SPST/SPDT Switches Using High Substrate Resistance. , 2007, , .		12
161	A 1.1-Gbit/s 10-GHz Outphasing Modulator With 23-dBm Output Power and 60-dB Dynamic Range in 45-nm CMOS SOI. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 2289-2300.	4.6	12
162	A 20–42-GHz IQ Receiver in 22-nm CMOS FD-SOI With 2.7–4.2-dB NF and â^25-dBm IP1dB for Wideband 5G Systems. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 4951-4960.	4.6	12

#	Article	IF	CITATIONS
163	Wideband Bandpass Filter for 5G Millimeter-Wave Application in 45-nm CMOS Silicon-on-Insulator. IEEE Electron Device Letters, 2021, 42, 1244-1247.	3.9	12
164	ACPR Improvement in Large Phased Arrays With Complex Modulated Waveforms. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 1045-1053.	4.6	11
165	A 28-GHz Full-Duplex Phased Array Front-End Using Two Cross-Polarized Arrays and a Canceller. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 1127-1135.	4.6	11
166	High-Power High-Reliability High-Q Switched RF MEMS Capacitors. , 2006, , .		10
167	A Low-Loss Double-Tuned Transformer. IEEE Microwave and Wireless Components Letters, 2007, 17, 772-774.	3.2	10
168	Variable spring constant, high contact force RF MEMS switch. , 2010, , .		10
169	High-\$Q\$ 3 b/4 b RF MEMS Digitally Tunable Capacitors for 0.8–3 GHz Applications. IEEE Microwave and Wireless Components Letters, 2012, 22, 394-396.	3.2	10
170	A 135–160 GHz balanced frequency doubler in 45 nm CMOS with 3.5 dBm peak power., 2014,,.		10
171	A 100–300-GHz Free-Space Scalar Network Analyzer Using Compact Tx and Rx Modules. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 4021-4029.	4.6	10
172	A Dual-Core 8-17 GHz LC VCO with Enhanced Tuning Switch-less Tertiary Winding and 208.8 dBc/Hz Peak FoM _T in 22nm FDSOI., 2020,,.		10
173	A single-chip 36-38 GHz 4-element transmit/receive phased-array with 5-bit amplitude and phase control. , 2009, , .		9
174	A 64 GHz 2 Gbps transmit/receive phased-array communication link in SiGe with 300 meter coverage. , 2017, , .		9
175	A Tunable Single-Feed Triple-Band LTE Antenna With Harmonic Suppression. IEEE Access, 2019, 7, 104667-104672.	4.2	9
176	A miniature DC-70 GHz SP4T switch in 0.13-µm CMOS. , 2009, , .		8
177	Highly dense microwave and millimeter-wave phased array T/R modules and Butler matrices using CMOS and SiGe RFICs. , 2010, , .		8
178	An RF-MEMS switch for high-power applications. , 2012, , .		8
179	60 GHz active phase shifter using an optimized quadrature all-pass network in 45nm CMOS., 2012,,.		8
180	A 0.01–8-GHz (12.5 Gb/s) 4\$,imes,\$4 CMOS Switch Matrix. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 381-386.	4.6	8

#	Article	IF	CITATIONS
181	A 9.4–11.7 GHz VCO in 0.12 Âμm SiGe BiCMOS with â°'123 dBc/Hz Phase Noise at 1 MHz Offset for 5G System , 2018, , .	S.	8
182	A 24 GHz Amplitude Monopulse Comparator in 0.13 \$mu\$m CMOS. IEEE Microwave and Wireless Components Letters, 2008, 18, 632-634.	3.2	7
183	A two-channel Ku-band BiCMOS digital beam-forming receiver for polarization-agile phased-array applications. , 2009, , .		7
184	A 0.3 THz 4 & COld-FET imaging array in 45 nm CMOS SOI., 2014, , .		7
185	Investigations on the Use of Multiple Unique Radiating Modes for 2-D Beam Steering. IEEE Transactions on Antennas and Propagation, 2016, 64, 4659-4670.	5.1	7
186	A 4-Channel 10–40 GHz Wideband Receiver with Integrated Frequency Quadrupler for High Resolution Millimeter-Wave Imaging Systems. , 2018, , .		7
187	A 35–105 GHz High Image-Rejection-Ratio IQ Receiver with Integrated LO Doubler and > 40 dB IRR. , 2018, , .		7
188	In-Situ Self-Test and Self-Calibration of Dual-Polarized 5G TRX Phased Arrays Leveraging Orthogonal-Polarization Antenna Couplings. , 2020, , .		7
189	A Multi-Standard 15-57 GHz 4-Channel Receive Beamformer with 4.8 dB Midband NF for 5G Applications. , 2020, , .		7
190	A 57.5–65.5 GHz Phased-Array Transmit Beamformer in 45 nm CMOS SOI With 5 dBm and 6.1% Linear PAE for 400 MBaud 64-QAM Waveforms. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 1772-1779.	4.6	7
191	Ultra Low Power 60 GHz ASK SiGe Receiver with 3-6 GBPS Capabilities. , 2009, , .		6
192	A 640& \pm x2013; 1030 MHz four-pole tunable filter with improved stopband rejection and controllable bandwidth and transmission zeros., 2013,,.		6
193	A 1.9–2.6GHz filter with both bandpass-to-bandstop reconfigurable function and bandpass-and-bandstop cascading function. , 2017, , .		6
194	Ultra-Low Cost Ku-Band Dual-Polarized Transmit and Receive Phased-Arrays for SATCOM and Point-to-Point Applications with Bandwidths up to 750 MHz., 2019,,.		6
195	A 25-29 GHz 64-Element Dual-Polarized/Dual-Beam Small-Cell with 45 dBm 400 MHz 5GNR Operation and High Spectral Purity. , 2020, , .		6
196	Intersymbol Interference and Equalization for Large 5G Phased Arrays With Wide Scan Angles. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 1955-1964.	4.6	6
197	A Ka-Band BiCMOS T/R Module for Phased Array Applications. Compound Semiconductor Integrated Circuit Symposium (CSICS), IEEE, 2008, , .	0.0	5
198	Cascadable RF MEMS switched capacitors for 0.1–2 GHz applications., 2009,,.		5

#	Article	IF	CITATIONS
199	High-efficiency elliptical-slot silicon RFIC antenna with quartz superstrate., 2012,,.		5
200	A 108& \pm x2013; 112 GHz 4& \pm x00D7; 4 wafer-scale phased array transmitter with high-efficiency on-chip antennas., 2012, , .		5
201	Wafer-Scale Millimeter-Wave Phased-Array RFICs. , 2014, , .		5
202	Analysis and Design of Wideband I/Q CMOS 100–200 Gb/s Modulators. IEEE Journal of Solid-State Circuits, 2019, 54, 2361-2374.	5.4	5
203	A 62 GHz Tx/Rx $2x128$ -Element Dual-Polarized Dual-Beam Wafer-Scale Phased-Array Transceiver with Minimal Reticle-to-Reticle Stitching. , 2019 , , .		5
204	2x2 and 4x4 CMOS Switching Matrices for 0.01-12 GHz Applications. , 2009, , .		4
205	Compact 2-pole and 4-pole 2.4–2.8 GHz dual-mode tunable filters. , 2010, , .		4
206	A Phased Array RFIC with Built-In Self-Test Using an Integrated Vector Signal Analyzer. , 2011, , .		4
207	RF MEMS miniature-switched capacitors with pull-down and pull-up electrodes for high power applications. , $2011, \ldots$		4
208	Linearity and Efficiency Improvements in Phased-Array Transmitters with Large Number of Elements and Complex Modulation. , $2018, \ldots$		4
209	A 1 Gbps 3.5-4.75 km Communication Link Based on a 5G 28 GHz $8 ilde{A}$ —8 Phased-Array. , 2019, , .		4
210	A 5G 24-30 GHz 2x32 Element Dual-Polarized Dual-Beam Phased Array Base-Station for 2x2 MIMO System. , 2019, , .		4
211	Large area bolometers for millimeter-wave power calibration. Journal of Infrared, Millimeter and Terahertz Waves, 1989, 10, 931-936.	0.6	3
212	A Low-Loss Microstrip Surface-Mount K-Band Package. , 2006, , .		3
213	C-Band low-loss phase shifter ≫360° for WLAN applications. , 2007, , .		3
214	A Q-band (40–45 GHz) 16-element phased-array transmitter in 0.18-μm SiGe BiCMOS technology. , 2008, , .		3
215	A compact SPDT RF MEMS switch with high contact force. , 2009, , .		3
216	Ultra Low-Loss 50-70 GHz SPDT Switch in 90 nm CMOS., 2009,,.		3

#	Article	IF	CITATIONS
217	An 8-Way Combined E-Band Power Amplifier with 24 dBm Psat and 12% PAE in 0.12 νm SiGe., 2018, , .		3
218	A 128-element 54-63 GHz 2-Dimensional Tx/Rx Phased-Array with 64-QAM/30 Gbps Communication Links. , 2019, , .		3
219	A 1 V 54-64 GHz 4-Channel Phased-Array Receiver in 45 nm RFSOI with 3.6/5.1 dB NF and -23 dBm IP1dB at 28/37 mW Per-Channel. , 2019, , .		3
220	A Low-Loss Microstrip Surface-Mount K-Band Package. , 2006, , .		2
221	A Q-band phased-array front-end with integrated Wilkinson couplers for linear power combining in SiGe BiCMOS. , 2008, , .		2
222	Low-power low-noise 0.13 µm CMOS X-band phased array receivers. , 2010, , .		2
223	A 4-element X-band CMOS phased-array RFIC in a QFN package. , 2012, , .		2
224	High power (> 10 W) RF MEMS switched capacitors. , 2012, , .		2
225	Millimeter-wave SiGe RFICs for large-scale phased-arrays. , 2014, , .		2
226	A 1.6 – 2.7 GHz tunable dual-band 4G-LTE antenna for carrier aggregation. , 2014, , .		2
227	A 2-15 GHz built-in-self-test system for wide-band phased arrays using self-correcting 8-state I/Q mixers. , 2016, , .		2
228	C-band low-loss phase shifter >360° for WLAN applications. , 2007, , .		1
229	X/Ku-Band SiGe BiCMOS Phased Array Chips with Simultaneous 2- and 4-Beam Capabilities., 2009,,.		1
230	A 20–40 GHz quasi-optical network analyzer., 2011,,.		1
231	Compact tunable 2.1–2.9 GHz band-pass filter using a novel vertical stepped-impedance resonator. , 2014, , .		1
232	A low-power SiGe D-band total power radiometer with NEPmin of 1.4 fW/Hz½ and NETD of 0.25K. , 2016, , .		1
233	A DC-60 GHz I/Q Modulator in 45 nm SOI CMOS for Ultra-Wideband 5G Radios. , 2018, , .		1
234	Intermodulation Effects and System Sensitivity Degradation in 5 mathrm $\{G\}$ Phased-Arrays due to Multiple Interferers. , 2018, , .		1

#	Article	IF	CITATIONS
235	A CMOS K-Band Quadrature Generator. IEEE Microwave and Wireless Components Letters, 2008, 18, 130-132.	3.2	O
236	High-efficiency 60 GHz dipole-box antennas. , 2010, , .		0
237	Corrections to "A Two-Channel 8–20-GHz SiGe BiCMOS Receiver With Selectable IFs for Multibeam Phased-Array Digital Beamforming Applications―[Mar 11 716-726]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2369-2369.	4.6	0
238	A miniature RF MEMS metal-contact switch with high biaxial and stress-gradient tolerance. , 2012, , .		0
239	Overview of two enabling technologies which can change our world: Millimeter/THz silicon RFICs, and RF MEMS (and SOT/SOS) tunable networks. , 2013, , .		O
240	A 0.65 & #x2013; 1 GHz tunable dual-band 4G-LTE antenna for carrier aggregation., 2014,,.		0
241	Extreme silicon RFICs for phased-array applications. , 2014, , .		0
242	Authors' Reply to "Comments on â€~A Quasi Elliptic Function 1.75–2.25 GHz 3-Pole Bandpass Filter With Bandwidth Control' ― IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2844-2844.	4.6	0
243	Authors' Reply to "Comments on â€~0.73–1.03-GHz Tunable Bandpass Filter With a Reconfigurable 2/3/4-Pole Responseâ€â€™. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 4226-4226.	4.6	0
244	Interwoven feeding networks for limited-scan phased array systems. , 2017, , .		0
245	A 5–15 GHz stacked I/Q modulator with 15–19 dBm OP <inf>1dB</inf> and 26–30 dBm OIP3 in nm SOI CMOS. , 2017, , .	45	0
246	A Scalable 60 GHz Tx/Rx 2x64-Element Dual-Polarized Dual-Beam Wafer-Scale Phased-Array with Integrated Dual-Transceivers. , 2019, , .		0