Mariusz Skwarczynski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1080468/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of Trimethyl Chitosan-Based Polyelectrolyte Complexes for Peptide Subunit Vaccine Delivery. Methods in Molecular Biology, 2022, 2414, 141-149.	0.9	2
2	Development of a hyperbranched polymer-based methotrexate nanomedicine for rheumatoid arthritis. Acta Biomaterialia, 2022, 142, 298-307.	8.3	7
3	Editorial: Advances in Vaccine Delivery: Adjuvants, Carriers, Formulations, and Routes. Frontiers in Pharmacology, 2022, 13, 857792.	3.5	0
4	Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. International Journal of Nanomedicine, 2022, Volume 17, 869-900.	6.7	17
5	Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics, 2022, 11, 412.	3.7	37
6	Development of a peptide vaccine against hookworm infection: Immunogenicity, efficacy, and immune correlates of protection. Journal of Allergy and Clinical Immunology, 2022, 150, 157-169.e10.	2.9	5
7	Investigation of liposomal self-adjuvanting peptide epitopes derived from conserved blood-stage Plasmodium antigens. PLoS ONE, 2022, 17, e0264961.	2.5	Ο
8	Liposomes for the Delivery of Lipopeptide Vaccines. Methods in Molecular Biology, 2022, 2412, 295-307.	0.9	8
9	Polymer–Peptide Conjugate Vaccine for Oral Immunization. Methods in Molecular Biology, 2022, 2412, 35-44.	0.9	1
10	Developments in Vaccine Adjuvants. Methods in Molecular Biology, 2022, 2412, 145-178.	0.9	32
11	Current Prospects in Peptide-Based Subunit Nanovaccines. Methods in Molecular Biology, 2022, 2412, 309-338.	0.9	6
12	Peptide-Based Vaccine against SARS-CoV-2: Peptide Antigen Discovery and Screening of Adjuvant Systems. Pharmaceutics, 2022, 14, 856.	4.5	4
13	New Advances in Short Peptides: Looking Forward. Molecules, 2022, 27, 3635.	3.8	9
14	A Potent Vaccine Delivery System. Bio-protocol, 2021, 11, e3973.	0.4	2
15	Antibodies to neutralising epitopes synergistically block the interaction of the receptorâ€binding domain of SARSâ€CoVâ€2 to ACE 2. Clinical and Translational Immunology, 2021, 10, e1260.	3.8	13
16	A Global Review on Short Peptides: Frontiers and Perspectives. Molecules, 2021, 26, 430.	3.8	190
17	Poly(hydrophobic amino acid)-Based Self-Adjuvanting Nanoparticles for Group A <i>Streptococcus</i> Vaccine Delivery. Journal of Medicinal Chemistry, 2021, 64, 2648-2658.	6.4	32
18	Cell-Penetrating Peptides-Based Liposomal Delivery System Enhanced Immunogenicity of Peptide-Based Vaccine against Group A Streptococcus. Vaccines, 2021, 9, 499.	4.4	19

#	Article	IF	CITATIONS
19	Chemical Conjugation Strategies for the Development of Protein-Based Subunit Nanovaccines. Vaccines, 2021, 9, 563.	4.4	47
20	Key Considerations for the Development of Safe and Effective SARSâ€CoVâ€2 Subunit Vaccine: A Peptideâ€Based Vaccine Alternative. Advanced Science, 2021, 8, e2100985.	11.2	16
21	Pre-clinical evaluation of a whole-parasite vaccine to control human babesiosis. Cell Host and Microbe, 2021, 29, 894-903.e5.	11.0	14
22	Polyacrylate-GnRH Peptide Conjugate as an Oral Contraceptive Vaccine Candidate. Pharmaceutics, 2021, 13, 1081.	4.5	8
23	Poly(hydrophobic amino acid) Conjugates for the Delivery of Multiepitope Vaccine against Group A Streptococcus. Bioconjugate Chemistry, 2021, 32, 2307-2317.	3.6	8
24	Oral Peptide Vaccine against Hookworm Infection: Correlation of Antibody Titers with Protective Efficacy. Vaccines, 2021, 9, 1034.	4.4	14
25	Double Conjugation Using Mercapto-Acryloyl and Alkyne-Azide Reactions for the Synthesis of Branched Multiantigenic Vaccine Candidates. Methods in Molecular Biology, 2021, 2355, 141-150.	0.9	0
26	Peptide-Polymer Conjugation Via Copper-Catalyzed Alkyne-Azide 1,3-Dipolar Cycloaddition. Methods in Molecular Biology, 2021, 2355, 1-7.	0.9	1
27	Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules, 2021, 11, 1515.	4.0	42
28	Development and Evaluation of a Cryopreserved Whole-Parasite Vaccine in a Rodent Model of Blood-Stage Malaria. MBio, 2021, 12, e0265721.	4.1	11
29	Hookworm infection: Toward development of safe and effective peptide vaccines. Journal of Allergy and Clinical Immunology, 2021, 148, 1394-1419.e6.	2.9	2
30	Detection and Quantification of SARS-CoV-2 Receptor Binding Domain Neutralization by a Sensitive Competitive ELISA Assay. Vaccines, 2021, 9, 1493.	4.4	5
31	Lipopeptide-Based Oral Vaccine Against Hookworm Infection. Journal of Infectious Diseases, 2020, 221, 934-942.	4.0	36
32	Mannosylated liposomes formulated with whole parasite P. falciparum blood-stage antigens are highly immunogenic in mice. Vaccine, 2020, 38, 1494-1504.	3.8	8
33	Carbohydrate Immune Adjuvants in Subunit Vaccines. Pharmaceutics, 2020, 12, 965.	4.5	27
34	Progress in the Development of Subunit Vaccines against Malaria. Vaccines, 2020, 8, 373.	4.4	15
35	A dual-adjuvanting strategy for peptide-based subunit vaccines against group A Streptococcus: Lipidation and polyelectrolyte complexes. Bioorganic and Medicinal Chemistry, 2020, 28, 115823.	3.0	6
36	Non-invasive mucosal vaccine delivery: advantages, challenges and the future. Expert Opinion on Drug Delivery, 2020, 17, 435-437.	5.0	45

#	Article	IF	CITATIONS
37	Polyacrylate–Peptide Antigen Conjugate as a Single-Dose Oral Vaccine against Group A Streptococcus. Vaccines, 2020, 8, 23.	4.4	25
38	Poly(amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. Science Advances, 2020, 6, eaax2285.	10.3	85
39	Development of Polyelectrolyte Complexes for the Delivery of Peptide-Based Subunit Vaccines against Group A Streptococcus. Nanomaterials, 2020, 10, 823.	4.1	29
40	Application of Fmoc-SPPS, Thiol-Maleimide Conjugation, and Copper(I)-Catalyzed Alkyne-Azide Cycloaddition "Click―Reaction in the Synthesis of a Complex Peptide-Based Vaccine Candidate Against Group A Streptococcus. Methods in Molecular Biology, 2020, 2103, 13-27.	0.9	6
41	Lipids as Activators of Innate Immunity in Peptide Vaccine Delivery. Current Medicinal Chemistry, 2020, 27, 2887-2901.	2.4	32
42	Development of natural and unnatural amino acid delivery systems against hookworm infection. Precision Nanomedicine, 2020, 3, 471-482.	0.8	16
43	An Isodipeptide Building Block for Microwave-Assisted Solid-Phase Synthesis of Difficult Sequence-Containing Peptides. Methods in Molecular Biology, 2020, 2103, 139-150.	0.9	2
44	Cholic Acid-based Delivery System for Vaccine Candidates against Group A Streptococcus. ACS Medicinal Chemistry Letters, 2019, 10, 1253-1259.	2.8	23
45	Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines, 2019, 7, 58.	4.4	50
46	Cell-penetrating peptides in vaccine delivery: facts, challenges and perspectives. Therapeutic Delivery, 2019, 10, 465-467.	2.2	23
47	Polyelectrolyte-Based Platforms for the Delivery of Peptides and Proteins. ACS Biomaterials Science and Engineering, 2019, 5, 4937-4950.	5.2	59
48	Self-assembly of trimethyl chitosan and poly(anionic amino acid)-peptide antigen conjugate to produce a potent self-adjuvanting nanovaccine delivery system. Bioorganic and Medicinal Chemistry, 2019, 27, 3082-3088.	3.0	30
49	Structure-activity relationship of group A streptococcus lipopeptide vaccine candidates in trimethyl chitosan-based self-adjuvanting delivery system. European Journal of Medicinal Chemistry, 2019, 179, 100-108.	5.5	27
50	Cell-penetrating Peptides: Efficient Vectors for Vaccine Delivery. Current Drug Delivery, 2019, 16, 430-443.	1.6	71
51	Polymers for subunit vaccine delivery. European Polymer Journal, 2019, 114, 397-410.	5.4	64
52	Induction of Plasmodium-Specific Immune Responses Using Liposome-Based Vaccines. Frontiers in Immunology, 2019, 10, 135.	4.8	17
53	Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces potent immune responses against group A streptococcus. Acta Biomaterialia, 2018, 80, 278-287.	8.3	75

54 Peptide-based vaccines. , 2018, , 327-358.

#	Article	IF	CITATIONS
55	Liposomal formulation of polyacrylate-peptide conjugate as a new vaccine candidate against cervical cancer. Precision Nanomedicine, 2018, 1, 183-193.	0.8	8
56	Investigating the affinity of poly tert -butyl acrylate toward Toll-Like Receptor 2. AIMS Allergy and Immunology, 2018, 2, 141-147.	0.5	6
57	Inulin: A New Adjuvant With Unknown Mode of Action. EBioMedicine, 2017, 15, 8-9.	6.1	8
58	Comparison of Fluorinated and Nonfluorinated Lipids in Self-Adjuvanting Delivery Systems for Peptide-Based Vaccines. ACS Medicinal Chemistry Letters, 2017, 8, 227-232.	2.8	12
59	The application of self-assembled nanostructures in peptide-based subunit vaccine development. European Polymer Journal, 2017, 93, 670-681.	5.4	57
60	Intranasal delivery of nanoparticle-based vaccines. Therapeutic Delivery, 2017, 8, 151-167.	2.2	62
61	Bivalent mucosal peptide vaccines administered using the LCP carrier system stimulate protective immune responses against Streptococcus pyogenes infection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2463-2474.	3.3	19
62	Induction of high titred, non-neutralising antibodies by self-adjuvanting peptide epitopes derived from the respiratory syncytial virus fusion protein. Scientific Reports, 2017, 7, 11130.	3.3	20
63	Liposomes as a Vaccine Delivery System. , 2017, , 221-239.		33
64	Highly Immunogenic Trimethyl Chitosan-based Delivery System for Intranasal Lipopeptide Vaccines against Group A Streptococcus. Current Drug Delivery, 2017, 14, 701-708.	1.6	21
65	Evaluation of Lipopeptides as Toll-like Receptor 2 Ligands. Current Drug Delivery, 2017, 14, 935-943.	1.6	6
66	Poly-L-lysine-coated nanoparticles are ineffective in inducing mucosal immunity against group a streptococcus. Biochemical Compounds, 2017, 5, 1.	0.7	6
67	Short cationic lipopeptides as effective antibacterial agents: Design, physicochemical properties and biological evaluation. Bioorganic and Medicinal Chemistry, 2016, 24, 2235-2241.	3.0	24
68	Multilayer engineered nanoliposomes as a novel tool for oral delivery of lipopeptide-based vaccines against group A <i>Streptococcus</i> . Nanomedicine, 2016, 11, 1223-1236.	3.3	60
69	Liposome-based intranasal delivery of lipopeptide vaccine candidates against group A streptococcus. Acta Biomaterialia, 2016, 41, 161-168.	8.3	62
70	The Use of Microwave-Assisted Solid-Phase Peptide Synthesis and Click Chemistry for the Synthesis of Vaccine Candidates Against Hookworm Infection. Methods in Molecular Biology, 2016, 1403, 639-653.	0.9	16
71	Linear and branched polyacrylates as a delivery platform for peptide-based vaccines. Therapeutic Delivery, 2016, 7, 601-609.	2.2	21
72	Multiantigenic peptide–polymer conjugates as therapeutic vaccines against cervical cancer. Bioorganic and Medicinal Chemistry, 2016, 24, 4372-4380.	3.0	34

#	Article	IF	CITATIONS
73	A semi-synthetic whole parasite vaccine designed to protect against blood stage malaria. Acta Biomaterialia, 2016, 44, 295-303.	8.3	24
74	Lipid core peptide/poly(lactic-co-glycolic acid) as a highly potent intranasal vaccine delivery system against Group A streptococcus. International Journal of Pharmaceutics, 2016, 513, 410-420.	5.2	36
75	Double adjuvanting strategy for peptide-based vaccines: trimethyl chitosan nanoparticles for lipopeptide delivery. Nanomedicine, 2016, 11, 3223-3235.	3.3	49
76	Structure–activity relationship of lipid core peptide-based Group A Streptococcus vaccine candidates. Bioorganic and Medicinal Chemistry, 2016, 24, 3095-3101.	3.0	25
77	Peptide-based synthetic vaccines. Chemical Science, 2016, 7, 842-854.	7.4	450
78	Double conjugation strategy to incorporate lipid adjuvants into multiantigenic vaccines. Chemical Science, 2016, 7, 2308-2321.	7.4	24
79	Recent advances in the development of subunit-based RSV vaccines. Expert Review of Vaccines, 2016, 15, 53-68.	4.4	26
80	Towards the Development of Synthetic Antibiotics: Designs Inspired by Natural Antimicrobial Peptides. Current Medicinal Chemistry, 2016, 23, 4610-4624.	2.4	17
81	The Role of Size in Development of Mucosal Liposome-Lipopeptide Vaccine Candidates Against Group A Streptococcus. Medicinal Chemistry, 2016, 13, 22-27.	1.5	21
82	Synthesis and immunological evaluation of peptide-based vaccine candidates against malaria. Biochemical Compounds, 2016, 4, 1.	0.7	3
83	Lipopeptide Nanoparticles: Development of Vaccines against Hookworm Parasite. ChemMedChem, 2015, 10, 1647-1654.	3.2	27
84	Self-Adjuvanting Therapeutic Peptide-Based Vaccine Induce CD8 ⁺ Cytotoxic T Lymphocyte Responses in a Murine Human Papillomavirus Tumor Model. Current Drug Delivery, 2015, 12, 3-8.	1.6	24
85	Levofloxacin and Indolicidin for Combination Antimicrobial Therapy. Current Drug Delivery, 2015, 12, 108-114.	1.6	37
86	Editorial (Thematic Issue: Drug Delivery Australia). Current Drug Delivery, 2015, 12, 2-2.	1.6	0
87	A study on the encapsulation of an occludin lipophilic derivative in liposomal carriers. Journal of Liposome Research, 2015, 25, 287-293.	3.3	8
88	The use of a conformational cathepsin D-derived epitope for vaccine development against Schistosoma mansoni. Bioorganic and Medicinal Chemistry, 2015, 23, 1307-1312.	3.0	27
89	Combined synthetic and recombinant techniques for the development of lipoprotein-based, self-adjuvanting vaccines targeting human papillomavirus type-16 associated tumors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5570-5575.	2.2	6
90	Self-assembling lipopeptides with a potent activity against Gram-positive bacteria, including multidrug resistant strains. Nanomedicine, 2015, 10, 3359-3371.	3.3	9

#	Article	IF	CITATIONS
91	Polyacrylate-Based Delivery System for Self-adjuvanting Anticancer Peptide Vaccine. Journal of Medicinal Chemistry, 2015, 58, 888-896.	6.4	56
92	Group A Streptococcal vaccine candidate: contribution of epitope to size, antigen presenting cell interaction and immunogenicity. Nanomedicine, 2014, 9, 2613-2624.	3.3	38
93	Recent progress in adjuvant discovery for peptide-based subunit vaccines. Human Vaccines and Immunotherapeutics, 2014, 10, 778-796.	3.3	183
94	Recent advances in peptide-based subunit nanovaccines. Nanomedicine, 2014, 9, 2657-2669.	3.3	172
95	Toll-like receptor agonists: a patent review (2011 – 2013). Expert Opinion on Therapeutic Patents, 2014, 24, 453-470.	5.0	62
96	The immune system likes nanotechnology. Nanomedicine, 2014, 9, 2607-2609.	3.3	10
97	Lipid core peptide targeting the cathepsin D hemoglobinase of <i>Schistosoma mansoni</i> as a component of a schistosomiasis vaccine. Human Vaccines and Immunotherapeutics, 2014, 10, 399-409.	3.3	23
98	Self-adjuvanting vaccine against group A streptococcus: Application of fibrillized peptide and immunostimulatory lipid as adjuvant. Bioorganic and Medicinal Chemistry, 2014, 22, 6401-6408.	3.0	41
99	Oral delivery of nanoparticle-based vaccines. Expert Review of Vaccines, 2014, 13, 1361-1376.	4.4	120
100	Polymer–peptide hybrids as a highly immunogenic single-dose nanovaccine. Nanomedicine, 2014, 9, 35-43.	3.3	44
101	Liposomes as Nanovaccine Delivery Systems. Current Topics in Medicinal Chemistry, 2014, 14, 1194-1208.	2.1	84
102	Self-Adjuvanting Polymer–Peptide Conjugates As Therapeutic Vaccine Candidates against Cervical Cancer. Biomacromolecules, 2013, 14, 2798-2806.	5.4	112
103	Microwave-assisted synthesis of difficult sequence-containing peptides using the isopeptide method. Organic and Biomolecular Chemistry, 2013, 11, 2370.	2.8	18
104	Lipo-Peptides/Saccharides for Peptide Vaccine Delivery. , 2013, , 571-579.		16
105	Peptide Conjugation via CuAAC â€ [~] Click' Chemistry. Molecules, 2013, 18, 13148-13174.	3.8	90
106	M-Protein-derived Conformational Peptide Epitope Vaccine Candidate against Group A Streptococcus. Current Drug Delivery, 2013, 10, 39-45.	1.6	18
107	pH-triggered peptide self-assembly into fibrils: a potential peptide-based subunit vaccine delivery platform. Biochemical Compounds, 2013, 1, 2.	0.7	7
108	Lipid Peptide Core Nanoparticles as Multivalent Vaccine Candidates against Streptococcus pyogenes. Australian Journal of Chemistry, 2012, 65, 35.	0.9	28

#	Article	IF	CITATIONS
109	Advances in Peptide-based Human Papillomavirus Therapeutic Vaccines. Current Topics in Medicinal Chemistry, 2012, 12, 1581-1592.	2.1	52
110	Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine, 2012, 7, 1877-1893.	3.3	92
111	Vaccination with Lipid Core Peptides Fails to Induce Epitope-Specific T Cell Responses but Confers Non-Specific Protective Immunity in a Malaria Model. PLoS ONE, 2012, 7, e40928.	2.5	20
112	Peptide-Based Subunit Vaccine against Hookworm Infection. PLoS ONE, 2012, 7, e46870.	2.5	38
113	Lipopeptides for the Fragment-Based Pharmaceutics Design. International Journal of Organic Chemistry, 2012, 02, 75-81.	0.7	4
114	Group A Streptococcal Vaccine Candidates based on the Conserved Conformational Epitope from M Protein. Drug Delivery Letters, 2011, 1, 2-8.	0.5	4
115	Peptide-Based Subunit Nanovaccines. Current Drug Delivery, 2011, 8, 282-289.	1.6	112
116	Synthesis of glycolipopeptidic building blocks for carbohydrate receptor discovery. Carbohydrate Research, 2011, 346, 1439-1444.	2.3	8
117	Self-adjuvanting polyacrylic nanoparticulate delivery system for group A streptococcus (GAS) vaccine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 168-173.	3.3	73
118	Lipid-Core-Peptide System for Self-Adjuvanting Synthetic Vaccine Delivery. Methods in Molecular Biology, 2011, 751, 297-308.	0.9	41
119	Group A Streptococcal Vaccine Candidates based on the Conserved Conformational Epitope from M Protein. Drug Delivery Letters, 2011, 1, 2-8.	0.5	12
120	Polyacrylate Dendrimer Nanoparticles: A Selfâ€Adjuvanting Vaccine Delivery System. Angewandte Chemie - International Edition, 2010, 49, 5742-5745.	13.8	149
121	Pro-apoptotic activity of lipidic α-amino acids isolated from Protopalythoa variabilis. Bioorganic and Medicinal Chemistry, 2010, 18, 7997-8004.	3.0	18
122	Thymine, adenine and lipoamino acid based gene delivery systems. Chemical Communications, 2010, 46, 3140.	4.1	13
123	Development of highly pure α-helical lipoglycopeptides as self-adjuvanting vaccines. Tetrahedron, 2009, 65, 3459-3464.	1.9	21
124	Design and Synthesis of Lipopeptide - Carbohydrate Assembled Multivalent Vaccine Candidates Using Native Chemical Ligation. Australian Journal of Chemistry, 2009, 62, 993.	0.9	21
125	Lipid Core Peptide System for Gene, Drug, and Vaccine Delivery. Australian Journal of Chemistry, 2009, 62, 956.	0.9	53
126	Application of Intramolecular Migration Reaction in Peptide Chemistry to Chemical Biology, Chemical Pharmaceutics and Medicinal Chemistry. Advances in Experimental Medicine and Biology, 2009, 611, 513-514.	1.6	1

#	Article	IF	CITATIONS
127	Development of Conformational Mimetics of Conserved Streptococcus Pyogenes Minimal Epitope as Vaccine Candidates. Current Drug Delivery, 2009, 6, 520-527.	1.6	7
128	Controlled Production of Amyloid β Peptide from a Photoâ€Triggered, Waterâ€Soluble Precursor "Click Peptide". ChemBioChem, 2008, 9, 3055-3065.	2.6	38
129	Development of novel water-soluble photocleavable protective group and its application for design of photoresponsive paclitaxel prodrugs. Bioorganic and Medicinal Chemistry, 2008, 16, 5389-5397.	3.0	67
130	Application of the O-N Intramolecular Acyl Migration Reaction in Medicinal Chemistry. Current Medicinal Chemistry, 2007, 14, 2813-2823.	2.4	48
131	"O-Acyl isopeptide method―for peptide synthesis: synthesis of forty kinds of "O-acyl isodipeptide unit― Boc-Ser/Thr(Fmoc-Xaa)-OH. Organic and Biomolecular Chemistry, 2007, 5, 1720-1730.	2.8	35
132	Paclitaxel Prodrugs:Â Toward Smarter Delivery of Anticancer Agents. Journal of Medicinal Chemistry, 2006, 49, 7253-7269.	6.4	156
133	Oâ^'N Intramolecular Alkoxycarbonyl Migration of Typical Protective Groups in Hydroxyamino Acids. Journal of Organic Chemistry, 2006, 71, 2542-2545.	3.2	26
134	â€~Click peptide': a novel â€~O-acyl isopeptide method' for peptide synthesis and chemical biology-oriente synthesis of amyloid β peptide analogues. Journal of Peptide Science, 2006, 12, 823-828.	ed 1.4	30
135	Development of first photoresponsive prodrug of paclitaxel. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4492-4496.	2.2	55
136	â€~O-Acyl isopeptide method' for the efficient synthesis of difficult sequence-containing peptides: use of â€~O-acyl isodipeptide unit'. Tetrahedron Letters, 2006, 47, 3013-3017.	1.4	59
137	No Auxiliary, No Byproduct Strategy for Water-Soluble Prodrugs of Taxoids:Â Scope and Limitation of Oâ^'N Intramolecular Acyl and Acyloxy Migration Reactionsâ€. Journal of Medicinal Chemistry, 2005, 48, 2655-2666.	6.4	43
138	O?N intramolecular acyl migration reaction in the development of prodrugs and the synthesis of difficult sequence-containing bioactive peptides. Biopolymers, 2004, 76, 344-356.	2.4	74
139	O–N Intramolecular acyl migration strategy in water-soluble prodrugs of taxoids. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4441-4444.	2.2	34
140	Mercuric Triflate Catalyzed Hydroxylative Carbocyclization of 1,6-Enynes ChemInform, 2003, 34, no.	0.0	0
141	A Novel Approach of Water-Soluble Paclitaxel Prodrug with No Auxiliary and No Byproduct:  Design and Synthesis of Isotaxel. Journal of Medicinal Chemistry, 2003, 46, 3782-3784.	6.4	83
142	Mercuric Triflate Catalyzed Hydroxylative Carbocyclization of 1,6-Enynes. Organic Letters, 2003, 5, 1609-1611.	4.6	66
143	Mercuric Triflate-TMU Catalyzed Hydration of Terminal Alkyne to give Methyl Ketone under Mild Conditions. Chemistry Letters, 2002, 31, 12-13.	1.3	72
144	Enantioselective hydrolysis of 1-butyryloxyalkylphosphonates by lipolytic microorganisms:Pseudomonas fluorescens andPenicillium citrinum. Chirality, 1999, 11, 109-114.	2.6	22

#	Article	IF	CITATIONS
145	Accurate assay of enantiopurity of 1-hydroxy- and 2-hydroxyalkylphosphonate esters. Tetrahedron: Asymmetry, 1996, 7, 1277-1280.	1.8	60
146	The Use of Lypolitic Microorganisms Pseudomonas fluorescens and Penicillium citrinum for the Preparation of Optically Active 1 -Hydroxyalkylphosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 86-86.	1.6	4
147	Alkylation of Potassium 1-(N-Benzyloxycarbonylamino)alkylphosphonates and Phosphinates in the Presence of 18-Crown-6. Synthetic Communications, 1995, 25, 3565-3571.	2.1	6
148	The potential of developing a protective peptideâ€based vaccines against SARSâ€CoVâ€2. Drug Development Research, 0, , .	2.9	2