Sergey Menis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10801921/publications.pdf

Version: 2024-02-01

37 papers	5,496 citations	29 h-index	35 g-index
39	39	39	4794
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rational HIV Immunogen Design to Target Specific Germline B Cell Receptors. Science, 2013, 340, 711-716.	12.6	680
2	Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature, 2012, 490, 417-420.	27.8	405
3	Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science, 2015, 349, 156-161.	12.6	358
4	HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. Immunity, 2016, 45, 483-496.	14.3	335
5	Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance. Cell, 2019, 177, 1153-1171.e28.	28.9	293
6	Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies. Journal of Experimental Medicine, 2013, 210, 655-663.	8.5	275
7	Precursor Frequency and Affinity Determine B Cell Competitive Fitness in Germinal Centers, Tested with Germline-Targeting HIV Vaccine Immunogens. Immunity, 2018, 48, 133-146.e6.	14.3	274
8	Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies. Cell, 2016, 166, 1459-1470.e11.	28.9	230
9	Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science, 2019, 363, 649-654.	12.6	227
10	Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Reports, 2016, 16, 2327-2338.	6.4	216
11	Induction of HIV Neutralizing Antibody Lineages in Mice with Diverse Precursor Repertoires. Cell, 2016, 166, 1471-1484.e18.	28.9	198
12	Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nature Communications, 2017, 8, 14954.	12.8	176
13	Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nature Medicine, 2020, 26, 430-440.	30.7	172
14	Promiscuous Glycan Site Recognition by Antibodies to the High-Mannose Patch of gp120 Broadens Neutralization of HIV. Science Translational Medicine, 2014, 6, 236ra63.	12.4	160
15	Multifaceted Effects of Antigen Valency on B Cell Response Composition and Differentiation InÂVivo. Immunity, 2020, 53, 548-563.e8.	14.3	149
16	Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci transgenic mice. Science, 2016, 353, 1557-1560.	12.6	147
17	Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathogens, 2015, 11, e1004932.	4.7	141
18	Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16473-16478.	7.1	141

#	Article	IF	CITATIONS
19	Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. Nature Communications, 2018, 9, 3693.	12.8	124
20	Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nature Communications, 2015, 6, 7479.	12.8	113
21	The human naive B cell repertoire contains distinct subclasses for a germline-targeting HIV-1 vaccine immunogen. Science Translational Medicine, 2018, 10, .	12.4	113
22	Glycan Masking Focuses Immune Responses to the HIV-1 CD4-Binding Site and Enhances Elicitation of VRC01-Class Precursor Antibodies. Immunity, 2018, 49, 301-311.e5.	14.3	110
23	Rapid and Focused Maturation of a VRC01-Class HIV Broadly Neutralizing Antibody Lineage Involves Both Binding and Accommodation of the N276-Glycan. Immunity, 2019, 51, 141-154.e6.	14.3	71
24	Enhancing Humoral Responses Against HIV Envelope Trimers via Nanoparticle Delivery with Stabilized Synthetic Liposomes. Scientific Reports, 2018, 8, 16527.	3.3	69
25	Immunogenicity of RNA Replicons Encoding HIV Env Immunogens Designed for Self-Assembly into Nanoparticles. Molecular Therapy, 2019, 27, 2080-2090.	8.2	58
26	Comprehensive Sieve Analysis of Breakthrough HIV-1 Sequences in the RV144 Vaccine Efficacy Trial. PLoS Computational Biology, 2015, 11, e1003973.	3.2	51
27	B cells expressing authentic naive human VRC01-class BCRs can be recruited to germinal centers and affinity mature in multiple independent mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22920-22931.	7.1	42
28	Targeting HIV Env immunogens to B cell follicles in nonhuman primates through immune complex or protein nanoparticle formulations. Npj Vaccines, 2020, 5, 72.	6.0	39
29	Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 Envelope glycoprotein trimers on neutralizing antibody induction. Virology, 2017, 505, 193-209.	2.4	36
30	In Vivo Assembly of Nanoparticles Achieved through Synergy of Structureâ€Based Protein Engineering and Synthetic DNA Generates Enhanced Adaptive Immunity. Advanced Science, 2020, 7, 1902802.	11.2	30
31	Glycoengineering HIV-1 Env creates â€~supercharged' and â€^hybrid' glycans to increase neutralizing antibody potency, breadth and saturation. PLoS Pathogens, 2018, 14, e1007024.	4.7	22
32	Combined PET and whole-tissue imaging of lymphatic-targeting vaccines in non-human primates. Biomaterials, 2021, 275, 120868.	11.4	16
33	A Chimeric HIV-1 Envelope Glycoprotein Trimer with an Embedded Granulocyte-Macrophage Colony-stimulating Factor (GM-CSF) Domain Induces Enhanced Antibody and T Cell Responses. Journal of Biological Chemistry, 2011, 286, 22250-22261.	3.4	15
34	An HIV-1 Envelope Glycoprotein Trimer with an Embedded IL-21 Domain Activates Human B Cells. PLoS ONE, 2013, 8, e67309.	2.5	4
35	Nanoparticle Vaccines: In Vivo Assembly of Nanoparticles Achieved through Synergy of Structureâ€Based Protein Engineering and Synthetic DNA Generates Enhanced Adaptive Immunity (Adv.) Tj ETQ	q1 ılı 0 .784	13 1 14 rgBT /
36	Comprehensive Sieve Analysis of Breakthrough HIV-1 Sequences in the RV144 Vaccine Efficacy Trial. AIDS Research and Human Retroviruses, 2014, 30, A25-A26.	1.1	0

SERGEY MENIS

#	Article	IF	CITATIONS
37	Investigating Epitope Exposure on Native Trimers. AIDS Research and Human Retroviruses, 2014, 30, A35-A35.	1.1	O