
Christian C Felder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10799891/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biased Profile of Xanomeline at the Recombinant Human M ₄ Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2022, 13, 1206-1218.	3.5	6
2	Muscarinic Acetylcholine Receptor Agonists as Novel Treatments for Schizophrenia. American Journal of Psychiatry, 2022, 179, 611-627.	7.2	29
3	Cryptic pocket formation underlies allosteric modulator selectivity at muscarinic GPCRs. Nature Communications, 2019, 10, 3289.	12.8	47
4	GPCR drug discovery-moving beyond the orthosteric to the allosteric domain. Advances in Pharmacology, 2019, 86, 1-20.	2.0	14
5	Identification and pharmacological profile of SPP1, a potent, functionally selective and brain penetrant agonist at muscarinic M ₁ receptors. British Journal of Pharmacology, 2019, 176, 110-126.	5.4	9
6	Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases. Neuropharmacology, 2018, 136, 449-458.	4.1	65
7	In Vitro Pharmacological Characterization and In Vivo Validation of LSN3172176 a Novel M1 Selective Muscarinic Receptor Agonist Tracer Molecule for Positron Emission Tomography. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 602-613.	2.5	10
8	Bitopic Binding Mode of an M ₁ Muscarinic Acetylcholine Receptor Agonist Associated with Adverse Clinical Trial Outcomes. Molecular Pharmacology, 2018, 93, 645-656.	2.3	25
9	Translational Pharmacology of the Metabotropic Glutamate 2 Receptor–Preferring Agonist LY2812223 in the Animal and Human Brain. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 190-197.	2.5	10
10	ldentification, expression and functional characterization of M4L, a muscarinic acetylcholine M4 receptor splice variant. PLoS ONE, 2017, 12, e0188330.	2.5	0
11	Characterization of PCS1055, a novel muscarinic M4 receptor antagonist. European Journal of Pharmacology, 2016, 782, 70-76.	3.5	20
12	Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus. Cerebral Cortex, 2016, 26, 414-426.	2.9	120
13	An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory. Journal of Biological Chemistry, 2016, 291, 8862-8875.	3.4	34
14	Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature, 2016, 531, 335-340.	27.8	272
15	M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. Journal of Clinical Investigation, 2016, 127, 487-499.	8.2	56
16	¹²³ I-lododexetimide Preferentially Binds to the Muscarinic Receptor Subtype M ₁ In Vivo. Journal of Nuclear Medicine, 2015, 56, 317-322.	5.0	22
17	Design and synthesis of N-[6-(Substituted Aminoethylideneamino)-2-Hydroxyindan-1-yl]arylamides as selective and potent muscarinic M1 agonists. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4158-4163.	2.2	4
18	Antipsychotic-Like Effect of the Muscarinic Acetylcholine Receptor Agonist BuTAC in Non-Human Primates, PLoS ONE, 2015, 10, e0122722,	2.5	2

#	Article	IF	CITATIONS
19	Characterization of the Novel Positive Allosteric Modulator, LY2119620, at the Muscarinic M ₂ and M ₄ Receptors. Molecular Pharmacology, 2014, 86, 106-115.	2.3	42
20	Development of a Radioligand, [3H]LY2119620, to Probe the Human M2 and M4 Muscarinic Receptor Allosteric Binding Sites. Molecular Pharmacology, 2014, 86, 116-123.	2.3	25
21	Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 2013, 504, 101-106.	27.8	779
22	The Muscarinic Acetylcholine Receptor Agonist BuTAC Mediates Antipsychotic-Like Effects via the M4 Subtype. Neuropsychopharmacology, 2013, 38, 2717-2726.	5.4	13
23	Probe Dependence in the Allosteric Modulation of a G Protein-Coupled Receptor: Implications for Detection and Validation of Allosteric Ligand Effects. Molecular Pharmacology, 2012, 81, 41-52.	2.3	115
24	The Role of Transmembrane Domain 3 in the Actions of Orthosteric, Allosteric, and Atypical Agonists of the M ₄ Muscarinic Acetylcholine Receptor. Molecular Pharmacology, 2011, 79, 855-865.	2.3	32
25	Pharmacological Characterization of LY593093, an M1 Muscarinic Acetylcholine Receptor-Selective Partial Orthosteric Agonist. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 622-632.	2.5	31
26	Biodistribution and dosimetry in humans of two inverse agonists to image cannabinoid CB1 receptors using positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 1499-1506.	6.4	22
27	Pharmacological characterization of the cannabinoid CB1 receptor PET ligand ortholog, [3H]MePPEP. European Journal of Pharmacology, 2010, 649, 44-50.	3.5	6
28	Imaging and Quantitation of Cannabinoid CB ₁ Receptors in Human and Monkey Brains Using ¹⁸ F-Labeled Inverse Agonist Radioligands. Journal of Nuclear Medicine, 2010, 51, 112-120.	5.0	91
29	Cortical M1 receptor concentration increases without a concomitant change in function in Alzheimer's disease. Journal of Chemical Neuroanatomy, 2010, 40, 63-70.	2.1	31
30	Molecular Mechanisms of Action and In Vivo Validation of an M4 Muscarinic Acetylcholine Receptor Allosteric Modulator with Potential Antipsychotic Properties. Neuropsychopharmacology, 2010, 35, 855-869.	5.4	143
31	Structural Determinants of Allosteric Agonism and Modulation at the M4 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2010, 285, 19012-19021.	3.4	70
32	Quantitation of cannabinoid CB1 receptors in healthy human brain using positron emission tomography and an inverse agonist radioligand. NeuroImage, 2009, 48, 362-370.	4.2	86
33	Drs. Shekhar, McKinzie, and Felder Reply. American Journal of Psychiatry, 2009, 166, 113-113.	7.2	5
34	Inflammatory Cytokines Enhance Muscarinic-Mediated Arachidonic Acid Release Through p38 Mitogen-Activated Protein Kinase in A2058 Cells. Journal of Neurochemistry, 2008, 74, 2033-2040.	3.9	10
35	Synthesis, Ex Vivo Evaluation, and Radiolabeling of Potent 1,5-Diphenylpyrrolidin-2-one Cannabinoid Subtype-1 Receptor Ligands as Candidates for In Vivo Imaging. Journal of Medicinal Chemistry, 2008, 51, 5833-5842.	6.4	69
36	Positron emission tomography imaging using an inverse agonist radioligand to assess cannabinoid CB1 receptors in rodents. Neurolmage, 2008, 41, 690-698.	4.2	47

#	Article	IF	CITATIONS
37	New Insights into the Function of M ₄ Muscarinic Acetylcholine Receptors Gained Using a Novel Allosteric Modulator and a DREADD (Designer Receptor Exclusively Activated by a Designer) Tj ETQq1	1 0.78 43 14 rg	;BT1¢®verloc
38	The PET Radioligand [11C]MePPEP Binds Reversibly and with High Specific Signal to Cannabinoid CB1 Receptors in Nonhuman Primate Brain. Neuropsychopharmacology, 2008, 33, 259-269.	5.4	80
39	Selective Muscarinic Receptor Agonist Xanomeline as a Novel Treatment Approach for Schizophrenia. American Journal of Psychiatry, 2008, 165, 1033-1039.	7.2	430
40	Endocannabinoids and their receptors as targets for treating metabolic and psychiatric disorders. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 561-567.	0.5	1
41	Cannabinoids Biology: The Search for New Therapeutic Targets. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2006, 6, 149-161.	3.4	42
42	Pharmacological Characterization of Endocannabinoid Transport and Fatty Acid Amide Hydrolase Inhibitors. Cellular and Molecular Neurobiology, 2006, 26, 405-421.	3.3	46
43	Rapid High-Energy Microwave Fixation is Required to Determine the Anandamide (N-arachidonoylethanolamine) Concentration of Rat Brain. Neurochemical Research, 2005, 30, 597-601.	3.3	64
44	Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochemical Research, 2003, 28, 437-442.	3.3	177
45	Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses,in vivophosphoinositide hydrolysis, and pilocarpine-induced seizure activity. European Journal of Neuroscience, 2003, 17, 1403-1410.	2.6	153
46	Muscarinic mechanisms of antipsychotic atypicality. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 1125-1143.	4.8	123
47	Muscarinic receptor subtypes mediating central and peripheral antinociception studied with muscarinic receptor knockout mice. Life Sciences, 2003, 72, 2047-2054.	4.3	93
48	Evaluation of Muscarinic Agonist-Induced Analgesia in Muscarinic Acetylcholine Receptor Knockout Mice. Molecular Pharmacology, 2002, 62, 1084-1093.	2.3	133
49	M1 muscarinic receptor signaling in mouse hippocampus and cortex. Brain Research, 2002, 944, 82-89.	2.2	84
50	Characterization of a Novel Endocannabinoid, Virodhamine, with Antagonist Activity at the CB1 Receptor. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 1020-1024.	2.5	531
51	The muscarinic agonist xanomeline increases monoamine release and immediate early gene expression in the rat prefrontal cortex. Biological Psychiatry, 2001, 49, 716-725.	1.3	43
52	Generation and pharmacological analysis of M2 and M4 muscarinic receptor knockout mice. Life Sciences, 2001, 68, 2457-2466.	4.3	56
53	Elucidating the role of muscarinic receptors in psychosis. Life Sciences, 2001, 68, 2605-2613.	4.3	106
54	Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature, 2001, 410, 207-212.	27.8	349

#	Article	IF	CITATIONS
55	The endocannabinoid nervous system. , 2001, 90, 45-60.		218
56	Receptor reserve of phosphoinositide-coupled muscarinic receptors in mouse hippocampus in vivo. Brain Research, 2001, 916, 165-171.	2.2	9
57	Therapeutic Opportunities for Muscarinic Receptors in the Central Nervous System. Journal of Medicinal Chemistry, 2000, 43, 4333-4353.	6.4	209
58	Cannabinoid receptors and their endogenous agonist, anandamide. Neurochemical Research, 1998, 23, 575-581.	3.3	65
59	CANNABINOID RECEPTORS AND THEIR ENDOGENOUS AGONISTS. Annual Review of Pharmacology and Toxicology, 1998, 38, 179-200.	9.4	348
60	Concurrent Stimulation of Cannabinoid CB1 and Dopamine D2 Receptors Augments cAMP Accumulation in Striatal Neurons: Evidence for a G _s Linkage to the CB1 Receptor. Journal of Neuroscience, 1997, 17, 5327-5333.	3.6	565
61	Independent induction of morphological transformation of CHO cells by receptor-activated cyclic AMP synthesis or by receptor-operated calcium influx. Biochemical Pharmacology, 1996, 51, 495-502.	4.4	7
62	The third intracellular domain of the m3 muscarinic receptor determines coupling to calcium influx in transfected Chinese hamster ovary cells. FEBS Letters, 1996, 386, 51-54.	2.8	10
63	Isolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat. FEBS Letters, 1996, 393, 231-235.	2.8	295
64	Chapter 18 Muscarinic receptor activated Ca2+channels in non-excitable cells. Progress in Brain Research, 1996, 109, 195-199.	1.4	4
65	Identification and Molecular Characterization of a m5 Muscarinic Receptor in A2058 Human Melanoma Cells. Journal of Biological Chemistry, 1996, 271, 17476-17484.	3.4	30
66	GABA _A Receptors Modulate Early Spontaneous Excitatory Activity in Differentiating P19 Neurons. Journal of Neurochemistry, 1996, 66, 233-242.	3.9	39
67	The Role of Anandamide and Related Fatty Acid Ethanolamides as Endogenous Ligands for the CB1 and CB2 Cannabinoid Receptors. , 1996, , 157-164.		1
68	Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB Journal, 1995, 9, 619-625.	0.5	468
69	Voltage-independent calcium channels. Biochemical Pharmacology, 1994, 48, 1997-2004.	4.4	59
70	Anandamide, an endogenous ligand of the cannabinoid receptor, induces hypomotility and hypothermia in vivo in rodents. Pharmacology Biochemistry and Behavior, 1993, 46, 967-972.	2.9	222
71	Cloning and characterization of the rat 5-HT5B receptor. FEBS Letters, 1993, 333, 25-31.	2.8	60
72	Muscarinic Acetylcholine Receptor Subtypes Associated with Release of Alzheimer Amyloid Precursor Derivatives Activate Multiple Signal Transduction Pathways. Annals of the New York Academy of Sciences, 1993, 695, 15-18.	3.8	14

#	Article	IF	CITATIONS
73	Receptor-coupled Amyloid Precursor Protein Processinga. Annals of the New York Academy of Sciences, 1993, 695, 122-127.	3.8	29
74	The Signal Transducer for the Dopamine-1 Regulated Sodium Transport in Renal Cortical Brush Border Membrane Vesicles. American Journal of Hypertension, 1990, 3, 47S-50S.	2.0	30
75	?1-Adrenergic Receptor Mediates Arachidonic Acid Release in Spinal Cord Neurons Independent of Inositol Phospholipid Turnover. Journal of Neurochemistry, 1990, 54, 1225-1232.	3.9	51
76	Muscarinic receptors mediate the release of arachidonic acid from spinal cord and hippocampal neurons in primary culture. Neuroscience Letters, 1990, 118, 235-237.	2.1	27
77	Carbachol-induced reverse transformation of Chinese hamster ovary cells transfected with and expressing the m5 muscarinic acetylcholine receptor. FEBS Letters, 1989, 245, 75-79.	2.8	10