
Javier Garcia-Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10798132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations) Tj ETQq1	1 0.784314 1.9	rg87/Overlo
2	Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chemical Society Reviews, 2017, 46, 389-414.	38.1	760
3	Nanotechnology for sustainable energy. Renewable and Sustainable Energy Reviews, 2009, 13, 2373-2384.	16.4	477
4	Coordination polymers, metal–organic frameworks and the need for terminology guidelines. CrystEngComm, 2012, 14, 3001.	2.6	464
5	Mesoporous materials for clean energy technologies. Chemical Society Reviews, 2014, 43, 7681-7717.	38.1	422
6	Realizing the Commercial Potential of Hierarchical Zeolites: New Opportunities in Catalytic Cracking. ChemCatChem, 2014, 6, 46-66.	3.7	368
7	Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance. Catalysis Science and Technology, 2012, 2, 987.	4.1	301
8	Adsorptive and Acidic Properties, Reversible Lattice Oxygen Evolution, and Catalytic Mechanism of Cryptomelane-Type Manganese Oxides as Oxidation Catalysts. Journal of the American Chemical Society, 2008, 130, 3198-3207.	13.7	231
9	A mesostructured Y zeolite as a superior FCC catalyst – from lab to refinery. Chemical Communications, 2012, 48, 11841.	4.1	146
10	Incorporation of chemical functionalities in the framework of mesoporous silica. Chemical Communications, 2011, 47, 9024.	4.1	119
11	Surfactant-Templating of Zeolites: From Design to Application. Chemistry of Materials, 2017, 29, 3827-3853.	6.7	115
12	Evidence of Intracrystalline Mesostructured Porosity in Zeolites by Advanced Gas Sorption, Electron Tomography and Rotation Electron Diffraction. ChemCatChem, 2014, 6, 3110-3115.	3.7	92
13	Development of Intracrystalline Mesoporosity in Zeolites through Surfactant-Templating. Crystal Growth and Design, 2017, 17, 4289-4305.	3.0	67
14	Synthesis, characterization and magnetism of monodispersed water soluble palladium nanoparticles. Journal of Materials Chemistry, 2008, 18, 5682.	6.7	66
15	Ultrasmall Zeoliteâ€L Crystals Prepared from Highly Interdispersed Alkali‧ilicate Precursors. Angewandte Chemie - International Edition, 2018, 57, 11283-11288.	13.8	60
16	Microwave-assisted catalysis by iron oxide nanoparticles on MCM-41: Effect of the support morphology. Applied Catalysis A: General, 2013, 453, 383-390.	4.3	51
17	Probe Molecule Kinetic Studies of Adsorption on MCM-41. Journal of Physical Chemistry B, 2003, 107, 1012-1020.	2.6	46
18	Synthesis of mesoporous metal complex-silica materials and their use as solvent-free catalysts. New Journal of Chemistry, 2011, 35, 225-234.	2.8	42

#	Article	IF	CITATIONS
19	Sol–Gel Coordination Chemistry: Building Catalysts from the Bottomâ€Up. ChemCatChem, 2013, 5, 844-860.	3.7	41
20	How to name new chemical elements (IUPAC Recommendations 2016). Pure and Applied Chemistry, 2016, 88, 401-405.	1.9	37
21	In Situ Time-Resolved Observation of the Development of Intracrystalline Mesoporosity in USY Zeolite. Chemistry of Materials, 2016, 28, 8971-8979.	6.7	35
22	Single-step synthesis of manganese oxide octahedral molecular sieves with large pore sizes. Chemical Communications, 2010, 46, 5945.	4.1	31
23	Hybrid Dyeâ€Titania Nanoparticles for Superior Lowâ€Temperature Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2018, 8, 1702583.	19.5	29
24	The Energetics of Surfactantâ€īemplating of Zeolites. Angewandte Chemie - International Edition, 2018, 57, 8724-8728.	13.8	25
25	Testing the limits of zeolite structural flexibility: ultrafast introduction of mesoporosity in zeolites. Journal of Materials Chemistry A, 2020, 8, 735-742.	10.3	24
26	Mesoporous organosilicas with Pd(II) complexes in their framework. Microporous and Mesoporous Materials, 2012, 158, 300-308.	4.4	22
27	Organotitanias: a versatile approach for band gap reduction in titania based materials. Journal of Materials Chemistry C, 2014, 2, 9497-9504.	5.5	21
28	The role of mesoporosity and Si/Al ratio in the catalytic etherification of glycerol with benzyl alcohol using ZSM-5 zeolites. Journal of Molecular Catalysis A, 2015, 406, 40-45.	4.8	20
29	Hierarchical Catalysts Prepared by Interzeolite Transformation. Journal of the American Chemical Society, 2022, 144, 5163-5171.	13.7	20
30	Incorporation of cubane-type Mo3S4 molybdenum cluster sulfides in the framework of mesoporous silica. Microporous and Mesoporous Materials, 2012, 151, 380-389.	4.4	18
31	Tracking Zeolite Crystallization by Elemental Mapping. Chemistry of Materials, 2020, 32, 3278-3287.	6.7	18
32	Time-Resolved Dynamics of Intracrystalline Mesoporosity Generation in USY Zeolite. Chemistry of Materials, 2019, 31, 5005-5013.	6.7	17
33	Surfactant‶emplated Zeolites: From Thermodynamics to Direct Observation. Advanced Materials Interfaces, 2021, 8, 2001388.	3.7	17
34	Helical Al- and Ce-MCM-41 materials as novel catalyst for acid and redox processes. Applied Catalysis A: General, 2012, 435-436, 1-9.	4.3	16
35	Mesoporous Metal Complex–Silica Aerogels for Environmentally Friendly Amination of Allylic Alcohols. ChemCatChem, 2015, 7, 87-93.	3.7	16
36	Ultrafast surfactant-templating of *BEA zeolite: An efficient catalyst for the cracking of polyethylene pyrolysis vapours. Chemical Engineering Journal, 2021, 412, 128566.	12.7	16

JAVIER GARCIA-MARTINEZ

#	Article	IF	CITATIONS
37	A stable luminescent hybrid mesoporous copper complex–silica. Chemical Communications, 2012, 48, 8883.	4.1	15
38	Insights into the Active Species of Nanoparticleâ€Functionalized Hierarchical Zeolites in Alkylation Reactions. ChemCatChem, 2014, 6, 3530-3539.	3.7	15
39	Bottom-up construction of highly photoactive dye-sensitized titania using Ru(II) and Ir(III) complexes as building blocks. Applied Catalysis B: Environmental, 2017, 200, 93-105.	20.2	13
40	Ordered circular mesoporosity induced by phospholipids. Microporous and Mesoporous Materials, 2007, 100, 63-69.	4.4	12
41	Hybrid Amino Acidâ€TiO ₂ Materials with Tuneable Crystalline Structure and Morphology for Photocatalytic Applications. Advanced Sustainable Systems, 2021, 5, 2100076.	5.3	12
42	Metal-complex ionosilicas: Cationic mesoporus silica with Ni(II) and Cu(II) complexes in their framework. Materials Letters, 2013, 95, 93-96.	2.6	6
43	The use of N^N ligands as an alternative strategy for the sol–gel synthesis of visible-light activated titanias. Journal of Materials Chemistry C, 2020, 8, 12495-12508.	5.5	6
44	Consecutive Surfactant-Templating Opens up New Possibilities for Hierarchical Zeolites. Crystal Growth and Design, 2020, 20, 515-520.	3.0	5
45	Titania–Silica Materials for Enhanced Photocatalysis. Chemistry - A European Journal, 2015, 21, 18338-18344.	3.3	4
46	Thermochemistry of Surfactantâ€Templating of USY Zeolite. Chemistry - A European Journal, 2019, 25, 10045-10048.	3.3	4
47	Engineering Mesopore Formation in Hierarchical Zeolites under High Hydrostatic Pressure. Chemistry of Materials, 2021, 33, 8440-8446.	6.7	4
48	Highly emissive hybrid mesoporous organometallo-silica nanoparticles for bioimaging. Materials Advances, 2022, 3, 3582-3592.	5.4	4
49	Visibleâ€Lightâ€Activated Black Organotitanias: How Synthetic Conditions Influence Their Structure and Photocatalytic Activity. ChemPlusChem, 2018, 83, 390-400.	2.8	3
50	Micelle Formation inside Zeolites: A Critical Step in Zeolite Surfactant-Templating Observed by Raman Microspectroscopy. , 2022, 4, 49-54.		3
51	Controversies, compromises and the common chemical language. Nature Chemistry, 2019, 11, 853-856.	13.6	2