Ch Subrahmanyam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10797454/publications.pdf Version: 2024-02-01

CH SHRDAHMANVAM

#	Article	IF	CITATIONS
1	Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor. Chemical Engineering Journal, 2013, 217, 41-47.	12.7	197
2	Catalytic abatement of volatile organic compounds assisted by non-thermal plasma. Applied Catalysis B: Environmental, 2006, 65, 150-156.	20.2	176
3	Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor. Journal of Hazardous Materials, 2012, 237-238, 283-289.	12.4	133
4	NiO/Ce _{1â^'x} Ni _x O _{2â^'δ} as an alternative to noble metal catalysts for CO oxidation. Catalysis Science and Technology, 2013, 3, 730-736.	4.1	123
5	Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chemical Engineering Journal, 2007, 134, 78-83.	12.7	120
6	Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Applied Catalysis B: Environmental, 2007, 74, 270-277.	20.2	118
7	Green Approach for Wastewater Treatment—Degradation and Mineralization of Aqueous Organic Pollutants by Discharge Plasma. Industrial & Engineering Chemistry Research, 2012, 51, 11097-11103.	3.7	116
8	Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma. Applied Energy, 2012, 95, 87-92.	10.1	91
9	Catalytic non-thermal plasma reactor for abatement of toluene. Chemical Engineering Journal, 2010, 160, 677-682.	12.7	90
10	Atmospheric pressure non-thermal plasma jet for the degradation of methylene blue in aqueous medium. Chemical Engineering Journal, 2015, 282, 116-122.	12.7	87
11	CO ₂ decomposition in a packed DBD plasma reactor: influence of packing materials. RSC Advances, 2016, 6, 39492-39499.	3.6	85
12	Catalytic non-thermal plasma reactor for mineralization of endosulfan in aqueous medium: A green approach for the treatment of pesticide contaminated water. Chemical Engineering Journal, 2014, 238, 157-163.	12.7	78
13	Simultaneous photocatalytic degradation of p -cresol and Cr (VI) by metal oxides supported reduced graphene oxide. Molecular Catalysis, 2018, 451, 87-95.	2.0	75
14	Effect of amino functionalized MWCNT on the crosslink density, fracture toughness of epoxy and mechanical properties of carbon–epoxy composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 2083-2086.	7.6	74
15	Low-cost adsorbents from bio-waste for the removal of dyes from aqueous solution. Environmental Science and Pollution Research, 2013, 20, 4111-4124.	5.3	73
16	A promising plasma-catalytic approach towards single-step methane conversion to oxygenates at room temperature. Applied Catalysis B: Environmental, 2021, 284, 119735.	20.2	69
17	Ni-Mn/γ-Al 2 O 3 assisted plasma dry reforming of methane. Catalysis Today, 2018, 309, 212-218.	4.4	68
18	Catalytic abatement of volatile organic compounds assisted by non-thermal plasma. Applied Catalysis B: Environmental. 2006. 65. 157-162.	20.2	66

#	Article	IF	CITATIONS
19	Catalytic Nonthermal Plasma Reactor for Dry Reforming of Methane. Energy & Fuels, 2013, 27, 4441-4447.	5.1	65
20	The catalytic effect of MnOx and CoOx on the decomposition of nitrobenzene in a non-thermal plasma reactor. Chemical Engineering Journal, 2012, 180, 39-45.	12.7	63
21	Phenol and Cr(<scp>vi</scp>) degradation with Mn ion doped ZnO under visible light photocatalysis. RSC Advances, 2017, 7, 43030-43039.	3.6	60
22	Production of hydrogen from hydrogen sulfide assisted by dielectric barrier discharge. International Journal of Hydrogen Energy, 2012, 37, 2204-2209.	7.1	50
23	Nonthermal Plasma Abatement of Trichloroethylene Enhanced by Photocatalysis. Journal of Physical Chemistry C, 2007, 111, 4315-4318.	3.1	49
24	Catalytic oxidation of toluene with molecular oxygen over Cr-substituted mesoporous materials. Applied Catalysis A: General, 2003, 241, 205-215.	4.3	46
25	Preparation of activated carbons from bio-waste: effect of surface functional groups on methylene blue adsorption. International Journal of Environmental Science and Technology, 2015, 12, 1363-1372.	3.5	46
26	Novel Catalytic Dielectric Barrier Discharge Reactor for Gas-Phase Abatement of Isopropanol. Plasma Chemistry and Plasma Processing, 2007, 27, 13-22.	2.4	44
27	Control over relaxor, piezo-photocatalytic and energy storage properties in Na0.5Bi0.5TiO3 via processing methodologies. Journal of Alloys and Compounds, 2019, 798, 540-552.	5.5	43
28	Non-thermal atmospheric pressure plasma jet for the bacterial inactivation in an aqueous medium. Science of the Total Environment, 2018, 640-641, 493-500.	8.0	41
29	Catalytic nonthermal plasma reactor for the abatement of low concentrations of isopropanol. Chemical Engineering Journal, 2010, 165, 194-199.	12.7	40
30	Facile synthesis of efficient visible active C-doped TiO2 nanomaterials with high surface area for the simultaneous removal of phenol and Cr(VI). Materials Research Bulletin, 2015, 61, 391-399.	5.2	39
31	Study of Short-Term Catalyst Deactivation Due to Carbon Deposition during Biogas Dry Reforming on Supported Ni Catalyst. Energy & Fuels, 2015, 29, 8047-8052.	5.1	38
32	Ni and Cu oxide supported \hat{I}^3 -Al2O3 packed DBD plasma reactor for CO2 activation. Journal of CO2 Utilization, 2021, 44, 101400.	6.8	38
33	Partial oxidation of toluene by O2 over mesoporous Cr–AlPO. Catalysis Communications, 2002, 3, 45-50.	3.3	36
34	Synthesis, characterisation and catalytic properties of vanadium substituted mesoporous aluminophosphates. Applied Catalysis A: General, 2005, 282, 67-71.	4.3	36
35	Effect of fuels on combustion synthesis of TiO2 – Towards efficient photocatalysts for methylene blue oxidation and Cr (VI) reduction under natural sunlight. Chemical Engineering Journal, 2013, 228, 545-553.	12.7	34
36	Catalytic non-thermal plasma reactor for the decomposition of a mixture of volatile organic compounds. Journal of Chemical Sciences, 2013, 125, 673-678.	1.5	33

#	Article	IF	CITATIONS
37	Reduced graphene oxide supported ZnO quantum dots for visible light-induced simultaneous removal of tetracycline and hexavalent chromium. RSC Advances, 2020, 10, 20494-20503.	3.6	33
38	Gold nanoparticle decorated bismuth sulfide nanorods for enhanced photoelectrochemical hydrogen production. Journal of Materials Chemistry C, 2019, 7, 6398-6405.	5.5	32
39	Conducting polymer coated graphene oxide reinforced C–epoxy composites for enhanced electrical conduction. Composites Part A: Applied Science and Manufacturing, 2016, 80, 237-243.	7.6	31
40	Catalytic nonthermal plasma reactor for the abatement of low concentrations of benzene. International Journal of Environmental Science and Technology, 2014, 11, 311-318.	3.5	29
41	Single step conversion of methane to methanol assisted by nonthermal plasma. Fuel Processing Technology, 2018, 179, 32-41.	7.2	29
42	Alkylation of naphthalene with alcohols over acidic mesoporous solids. Journal of Molecular Catalysis A, 2005, 226, 155-163.	4.8	28
43	Influence of hydrogen peroxide on the simultaneous removal of Cr(VI) and methylene blue from aqueous medium under atmospheric pressure plasma jet. Journal of Environmental Chemical Engineering, 2015, 3, 2760-2767.	6.7	28
44	Dry Reforming of Methane in DBD Plasma over Niâ€Based Catalysts: Influence of Process Conditions and Support on Performance and Durability. Energy Technology, 2019, 7, 1801008.	3.8	26
45	A facile method to decompose CO2 using a g-C3N4-assisted DBD plasma reactor. Environmental Research, 2020, 183, 109286.	7.5	25
46	NTP reactor for a single stage methane conversion to methanol: Influence of catalyst addition and effect of promoters. Chemical Engineering Journal, 2019, 372, 638-647.	12.7	24
47	Catalytic DBD plasma approach for methane partial oxidation to methanol under ambient conditions. Catalysis Today, 2019, 337, 117-125.	4.4	24
48	Non-thermal discharge plasma promoted redox transformation of arsenic(III) and chromium(VI) in an aqueous medium. Chemical Engineering Journal, 2017, 329, 211-219.	12.7	23
49	Photocatalytic hydrogenation of nitroarenes: supporting effect of CoO _x on TiO ₂ nanoparticles. New Journal of Chemistry, 2019, 43, 748-754.	2.8	22
50	g-C3N4 promoted DBD plasma assisted dry reforming of methane. Energy, 2019, 183, 630-638.	8.8	22
51	Synthesis of CdS/CeO 2 nanomaterials for photocatalytic H 2 production and simultaneous removal of phenol and Cr(VI). Journal of Environmental Chemical Engineering, 2015, 3, 2350-2357.	6.7	21
52	Nanoâ€sized Recyclable PdO Supported Carbon Nanostructures for Heck Reaction: Influence of Carbon Materials. ChemistrySelect, 2017, 2, 2700-2707.	1.5	21
53	Bismuth sulfide nanocrystals and gold nanorods increase the photovoltaic response of a TiO2/CdS based cell. Solar Energy Materials and Solar Cells, 2017, 159, 296-306.	6.2	21
54	Investigation on the physicochemical properties of Ce _{0.8} Eu _{0.1} M _{0.1} O _{2â^î^} (M = Zr, Hf, La, and Sm) solid solutions towards soot combustion. New Journal of Chemistry, 2018, 42, 5276-5283.	2.8	20

#	Article	IF	CITATIONS
55	Low-cost adsorbent derived from the coconut shell for the removal of hexavalent chromium from aqueous medium. Materials Today: Proceedings, 2020, 26, 44-51.	1.8	20
56	Hydrogen production from hydrogen sulfide in a packed-bed DBD reactor. International Journal of Hydrogen Energy, 2012, 37, 8217-8222.	7.1	19
57	Recyclable Pd/CuFe ₂ O ₄ nanowires: a highly active catalyst for C–C couplings and synthesis of benzofuran derivatives. RSC Advances, 2018, 8, 21030-21039.	3.6	19
58	Fabrication of Pd/CuFe ₂ O ₄ hybrid nanowires: a heterogeneous catalyst for Heck couplings. New Journal of Chemistry, 2018, 42, 1646-1654.	2.8	18
59	Synthesis, characterization and catalytic activity of mesoporous trivalent iron substituted aluminophosphates. Journal of Molecular Catalysis A, 2004, 223, 149-153.	4.8	17
60	Combustion synthesized TiO2 for enhanced photocatalytic activity under the direct sunlight-optimization of titanylnitrate synthesis. Materials Research Bulletin, 2012, 47, 2415-2421.	5.2	17
61	Cuprous Sulfide@Carbon nanostructures based counter electrodes with cadmium sulfide/titania photoanode for liquid junction solar cells. Electrochimica Acta, 2018, 278, 374-384.	5.2	17
62	Catalytic nonthermal plasma assisted co-processing of methane and nitrous oxide for methanol production. Catalysis Today, 2015, 256, 102-107.	4.4	16
63	One pot synthesis of CdS/TiO 2 hetero-nanostructures for enhanced H 2 production from water and removal of pollutants from aqueous streams. Materials Research Bulletin, 2016, 73, 377-384.	5.2	16
64	Cu-ZnO for visible light induced mineralization of Bisphenol-A: Impact of Cu ion doping. Journal of Environmental Chemical Engineering, 2019, 7, 103057.	6.7	16
65	Degradation and mineralization of aqueous phenol by an atmospheric pressure catalytic plasma reactor. Journal of Environmental Chemical Engineering, 2018, 6, 3780-3786.	6.7	15
66	NTP-assisted partial oxidation of methane to methanol: effect of plasma parameters on glass-packed DBD. Journal Physics D: Applied Physics, 2019, 52, 015204.	2.8	15
67	Catalytic DBD plasma reactor for CO oxidation by in situ N2O decomposition. Catalysis Today, 2013, 211, 53-57.	4.4	14
68	C and N doped nano-sized TiO ₂ for visible light photocatalytic degradation of aqueous pollutants. Journal of Experimental Nanoscience, 2015, 10, 115-125.	2.4	14
69	Catalytic packed bed non-thermal plasma reactor for the extraction of hydrogen from hydrogen sulfide. International Journal of Energy Research, 2013, 37, 1280-1286.	4.5	13
70	Degradation of malachite green by dielectric barrier discharge plasma. Water Science and Technology, 2013, 67, 1097-1104.	2.5	13
71	Kinetics of hydrogen sulfide decomposition in a DBD plasma reactor operated at high temperature. Journal of Energy Chemistry, 2013, 22, 382-386.	12.9	12
72	Novel synthesis of C, N doped rice grain shaped ZnS nanomaterials – towards enhanced visible light photocatalytic activity for aqueous pollutant removal and H ₂ production. RSC Advances, 2014, 4, 23292-23298.	3.6	12

#	Article	IF	CITATIONS
73	Promising catalytic activity by non-thermal plasma synthesized SBA-15-supported metal catalysts in one-step plasma-catalytic methane conversion to value-added fuels. Catalysis Science and Technology, 2020, 10, 5566-5578.	4.1	11
74	Effect of carbon nanofibre addition on the mechanical properties of different V f carbon-epoxy composites. Bulletin of Materials Science, 2015, 38, 309-317.	1.7	10
75	Methane decomposition by plasma-packed bed non-thermal plasma reactor. Chemical Engineering Science, 2022, 258, 117779.	3.8	10
76	Nonthermal plasma assisted photocatalytic oxidation of dilute benzene. Journal of Chemical Sciences, 2012, 124, 841-845.	1.5	9
77	Organic transformations catalyzed by palladium nanoparticles on carbon nanomaterials. Journal of Chemical Sciences, 2018, 130, 1.	1.5	9
78	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticles. RSC Advances, 2018, 8, 24827-24835.	3.6	9
79	Enhanced synergy by plasma reduced Pd nanoparticles on in-plasma catalytic methane conversion to liquid oxygenates. Catalysis Communications, 2020, 147, 106139.	3.3	9
80	Novel ultra-small Pd NPs on SOS spheres: a new catalyst for domino intramolecular Heck and intermolecular Sonogashira couplings. RSC Advances, 2020, 10, 4568-4578.	3.6	9
81	Palladium Nanoparticles on Silica Nanospheres for Switchable Reductive Coupling of Nitroarenes. Catalysis Letters, 2020, 150, 2309-2321.	2.6	9
82	Visible light-induced catalytic abatement of 4-nitrophenol and Rhodamine B using ZnO/g-C3N4 catalyst. Journal of Chemical Sciences, 2021, 133, 1.	1.5	9
83	Fast and clean functionalization of MWCNTs by DBD plasma and its influence on mechanical properties of C–epoxy composites. RSC Advances, 2015, 5, 62941-62945.	3.6	8
84	Catalytic Plasma Reactor for Abatement of Dilute Nitrobenzene. Chinese Journal of Catalysis, 2011, 32, 795-799.	14.0	7
85	Surface modification of carbon fabric for isopropanol removal from gas stream. Microelectronic Engineering, 2014, 126, 60-64.	2.4	6
86	Catalytic non-thermal plasma reactor for stripping the VOCs from air. Composite Interfaces, 2014, 21, 651-658.	2.3	6
87	Effect of Plasma Etched CNFs on Toughness and Mechanical Properties of Epoxy Composites. Materials and Manufacturing Processes, 2015, 30, 387-392.	4.7	5
88	Physicochemical process of non-thermal plasma at gas-liquid interface and synergistic effect of plasma with catalyst. Current Applied Physics, 2022, 36, 16-26.	2.4	5
89	Removal of mixture of VOCs by nonthermal plasma. Composite Interfaces, 2012, 19, 271-277.	2.3	4
90	Room-Temperature Toluene Decomposition by Catalytic Non-Thermal Plasma Reactor. IEEE Transactions on Plasma Science, 2022, 50, 1416-1422.	1.3	4

#	Article	IF	CITATIONS
91	The reinforcement ability of ozone-treated CNFs on mechanical properties of C–epoxy composites. Composite Interfaces, 2015, 22, 291-298.	2.3	3
92	Heterogeneous Direct Acylation Strategy to Diaryl Ketones and Their Application to 1, 3â€Dihydroisobenzofurans. ChemistrySelect, 2020, 5, 1349-1352.	1.5	3
93	ZnAlMCM-41: a very ecofriendly and reusable solid acid catalyst for the highly selective synthesis of 1,3-dioxanes by the Prins cyclization of olefins. Dalton Transactions, 2021, 50, 1672-1682.	3.3	3
94	Construction of metal oxide decorated \$\$hbox {g-C}_{{3}hbox {N}_{{4}}\$\$ g-C 3 N 4 materials with enhanced photocatalytic p. Journal of Chemical Sciences, 2019, 131, 1.	1.5	2
95	Hydroxylation of Phenol over M-MCM-48. Eurasian Chemico-Technological Journal, 2001, 3, 59.	0.6	2
96	Switching of support materials for the hydrogenation of nitroarenes: A review. Catalysis Reviews - Science and Engineering, 2024, 66, 259-342.	12.9	2
97	Mesoporous V-AlPO – New Partial Oxidation Catalyst. Eurasian Chemico-Technological Journal, 2017, 4, 169.	0.6	1