
Jinyang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10797106/publications.pdf Version: 2024-02-01

LINIVANO LI

#	Article	IF	CITATIONS
1	Network-based redox communication between abiotic interactive materials. IScience, 2022, 25, 104548.	4.1	4
2	Hydrogel Patterning with Catechol Enables Networked Electron Flow. Advanced Functional Materials, 2021, 31, 2007709.	14.9	24
3	Interactive Materials for Bidirectional Redoxâ€Based Communication. Advanced Materials, 2021, 33, e2007758.	21.0	14
4	Simple, rapidly electroassembled thiolated PEGâ€based sensor interfaces enable rapid interrogation of antibody titer and glycosylation. Biotechnology and Bioengineering, 2021, 118, 2744-2758.	3.3	8
5	Mediated Electrochemical Probing: A Systems-Level Tool for Redox Biology. ACS Chemical Biology, 2021, 16, 1099-1110.	3.4	13
6	A Redox-Based Autoinduction Strategy to Facilitate Expression of 5xCys-Tagged Proteins for Electrobiofabrication. Frontiers in Microbiology, 2021, 12, 675729.	3.5	5
7	Mediated electrochemistry for redox-based biological targeting: entangling sensing and actuation for maximizing information transfer. Current Opinion in Biotechnology, 2021, 71, 137-144.	6.6	19
8	Catechol Patterned Film Enables the Enzymatic Detection of Glucose with Cell Phone Imaging. ACS Sustainable Chemistry and Engineering, 2021, 9, 14836-14845.	6.7	7
9	Catecholâ€Based Molecular Memory Film for Redox Linked Bioelectronics. Advanced Electronic Materials, 2020, 6, 2000452.	5.1	14
10	Mediated Electrochemistry to Mimic Biology's Oxidative Assembly of Functional Matrices. Advanced Functional Materials, 2020, 30, 2001776.	14.9	17
11	Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels. Biofabrication, 2020, 12, 035007.	7.1	25
12	Electrical cuing of chitosan's mesoscale organization. Reactive and Functional Polymers, 2020, 148, 104492.	4.1	15
13	Catechol-Based Capacitor for Redox-Linked Bioelectronics. ACS Applied Electronic Materials, 2019, 1, 1337-1347.	4.3	26
14	Redox Is a Global Biodevice Information Processing Modality. Proceedings of the IEEE, 2019, 107, 1402-1424.	21.3	37
15	Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication, 2019, 11, 032002.	7.1	43
16	Coupling Self-Assembly Mechanisms to Fabricate Molecularly and Electrically Responsive Films. Biomacromolecules, 2019, 20, 969-978.	5.4	14
17	Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species. Biomaterials, 2018, 162, 109-122.	11.4	72
18	Reversibly Reconfigurable Cross-Linking Induces Fusion of Separate Chitosan Hydrogel Films. ACS Applied Bio Materials, 2018, 1, 1695-1704.	4.6	12

Jinyang Li

#	Article	IF	CITATIONS
19	Redox: Electron-Based Approach to Bio-Device Molecular Communication. , 2018, , .		2
20	Radical Scavenging Activities of Biomimetic Catechol-Chitosan Films. Biomacromolecules, 2018, 19, 3502-3514.	5.4	34
21	Biofabricating Functional Soft Matter Using Protein Engineering to Enable Enzymatic Assembly. Bioconjugate Chemistry, 2018, 29, 1809-1822.	3.6	14
22	Reverse Engineering To Characterize Redox Properties: Revealing Melanin's Redox Activity through Mediated Electrochemical Probing. Chemistry of Materials, 2018, 30, 5814-5826.	6.7	36
23	Electrochemistry for bio-device molecular communication: The potential to characterize, analyze and actuate biological systems. Nano Communication Networks, 2017, 11, 76-89.	2.9	15
24	Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology. Free Radical Biology and Medicine, 2017, 105, 110-131.	2.9	32
25	The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin. ACS Chemical Neuroscience, 2017, 8, 2766-2777.	3.5	11
26	Connecting Biology to Electronics: Molecular Communication via Redox Modality. Advanced Healthcare Materials, 2017, 6, 1700789.	7.6	40
27	Recovery and separation of erythromycin from industrial wastewater by imprinted magnetic nanoparticles that exploit βâ€cyclodextrin as the functional monomer. Journal of Separation Science, 2016, 39, 450-459.	2.5	9
28	Biofabricated Nanoparticle Coating for Liver ell Targeting. Advanced Healthcare Materials, 2015, 4, 1972-1981.	7.6	13
29	Template size matched film thickness for effectively in situ surface imprinting: a model study of glycoprotein imprints. RSC Advances, 2015, 5, 47010-47021.	3.6	18
30	Biospecific Selfâ€Assembly of a Nanoparticle Coating for Targeted and Stimuliâ€Responsive Drug Delivery. Advanced Functional Materials, 2015, 25, 1404-1417.	14.9	50
31	Effect of the solvent on improving the recognition properties of surface molecularly imprinted polymers for precise separation of erythromycin. RSC Advances, 2015, 5, 83619-83627.	3.6	6
32	Orthogonal Redox and Optical Stimuli Can Induce Independent Responses for Catechol-Chitosan Films. Materials Chemistry Frontiers, 0, , .	5.9	3