John M Archibald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1079538/publications.pdf Version: 2024-02-01

	66315	60583
7,434	42	81
citations	h-index	g-index
112	112	6758
docs citations	times ranked	citing authors
		U
	citations 112	7,434 42 citations h-index 112 112

#	Article	IF	CITATIONS
1	The Earth BioGenome Project 2020: Starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	124
2	Standards recommendations for the Earth BioGenome Project. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33
3	Why sequence all eukaryotes?. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	51
4	TreeTuner: A pipeline for minimizing redundancy and complexity in large phylogenetic datasets. STAR Protocols, 2022, 3, 101175.	0.5	0
5	Submergence of the filamentous Zygnematophyceae Mougeotia induces differential gene expression patterns associated with core metabolism and photosynthesis. Protoplasma, 2022, 259, 1157-1174.	1.0	12
6	Evolutionary Dynamics and Lateral Gene Transfer in Raphidophyceae Plastid Genomes. Frontiers in Plant Science, 2022, 13, .	1.7	3
7	Mitochondrial Genome Evolution in Pelagophyte Algae. Genome Biology and Evolution, 2021, 13, .	1.1	10
8	The past, present and future of the tree of life. Current Biology, 2021, 31, R314-R321.	1.8	18
9	Re-examination of two diatom reference genomes using long-read sequencing. BMC Genomics, 2021, 22, 379.	1.2	22
10	RNA-Seq analysis reveals potential regulators of programmed cell death and leaf remodelling in lace plant (Aponogeton madagascariensis). BMC Plant Biology, 2021, 21, 375.	1.6	5
11	Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nature Communications, 2021, 12, 6003.	5.8	17
12	Cryptomonads. Current Biology, 2020, 30, R1114-R1116.	1.8	4
13	Comparative Plastid Genomics of Non-Photosynthetic Chrysophytes: Genome Reduction and Compaction. Frontiers in Plant Science, 2020, 11, 572703.	1.7	8
14	Comparative analyses of saprotrophy in Salisapilia sapeloensis and diverse plant pathogenic oomycetes reveal lifestyle-specific gene expression. FEMS Microbiology Ecology, 2020, 96, .	1.3	4
15	Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes. Trends in Parasitology, 2020, 36, 927-941.	1.5	41
16	Genomic Insights into Plastid Evolution. Genome Biology and Evolution, 2020, 12, 978-990.	1.1	79
17	Phagocytosis in a Shape-shifting Bacterium. Trends in Microbiology, 2020, 28, 428-430.	3.5	0
18	Comparative Plastid Genomics of Cryptomonas Species Reveals Fine-Scale Genomic Responses to Loss of Photosynthesis. Genome Biology and Evolution, 2020, 12, 3926-3937.	1.1	27

John M Archibald

#	Article	IF	CITATIONS
19	Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits. Plant Journal, 2020, 103, 1025-1048.	2.8	65
20	Evolutionary Biology: Viral Rhodopsins Illuminate Algal Evolution. Current Biology, 2020, 30, R1469-R1471.	1.8	4
21	Genomics reveals alga-associated cyanobacteria hiding in plain sight. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15757-15759.	3.3	2
22	Evolution: New Protist Predators under the Sun. Current Biology, 2019, 29, R936-R938.	1.8	2
23	Ubiquitin fusion proteins in algae: implications for cell biology and the spread of photosynthesis. BMC Genomics, 2019, 20, 38.	1.2	9
24	Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation. BMC Evolutionary Biology, 2019, 19, 20.	3.2	27
25	Relative Mutation Rates in Nucleomorph-Bearing Algae. Genome Biology and Evolution, 2019, 11, 1045-1053.	1.1	8
26	Nucleomorph Small RNAs in Cryptophyte and Chlorarachniophyte Algae. Genome Biology and Evolution, 2019, 11, 1117-1134.	1.1	1
27	Symbiosis in the microbial world: from ecology to genome evolution. Biology Open, 2018, 7, .	0.6	34
28	10KP: A phylodiverse genome sequencing plan. GigaScience, 2018, 7, 1-9.	3.3	169
29	Opportunistic but Lethal: The Mystery of Paramoebae. Trends in Parasitology, 2018, 34, 404-419.	1.5	41
30	Plant evolution: landmarks on the path to terrestrial life. New Phytologist, 2018, 217, 1428-1434.	3.5	236
31	Plastid genomes. Current Biology, 2018, 28, R336-R337.	1.8	22
32	Embryophyte stress signaling evolved in the algal progenitors of land plants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3471-E3480.	3.3	164
33	Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. BMC Biology, 2018, 16, 137.	1.7	42
34	Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life, 2018, 70, 1267-1274.	1.5	39
35	On plant defense signaling networks and early land plant evolution. Communicative and Integrative Biology, 2018, 11, 1-14.	0.6	54
36	Comparative mitochondrial genomics of cryptophyte algae: gene shuffling and dynamic mobile genetic elements. BMC Genomics, 2018, 19, 275.	1.2	23

JOHN M ARCHIBALD

#	Article	IF	CITATIONS
37	Lateral Gene Transfer in the Adaptation of the Anaerobic Parasite Blastocystis to the Gut. Current Biology, 2017, 27, 807-820.	1.8	94
38	Diversity and Evolution of <i>Paramoeba</i> spp. and their Kinetoplastid Endosymbionts. Journal of Eukaryotic Microbiology, 2017, 64, 598-607.	0.8	14
39	Endosymbiosis: Did Plastids Evolve from a Freshwater Cyanobacterium?. Current Biology, 2017, 27, R103-R105.	1.8	56
40	More protist genomes needed. Nature Ecology and Evolution, 2017, 1, 145.	3.4	78
41	The New Red Algal Subphylum Proteorhodophytina Comprises the Largest and Most Divergent Plastid Genomes Known. Current Biology, 2017, 27, 1677-1684.e4.	1.8	89
42	A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids. Molecular Biology and Evolution, 2017, 34, 2355-2366.	3.5	52
43	How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae?. Plant and Cell Physiology, 2017, 58, 934-945.	1.5	102
44	Evolution: Protein Import in a Nascent Photosynthetic Organelle. Current Biology, 2017, 27, R1004-R1006.	1.8	2
45	Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Scientific Reports, 2017, 7, 11688.	1.6	44
46	Evolutionary Dynamics of Cryptophyte Plastid Genomes. Genome Biology and Evolution, 2017, 9, 1859-1872.	1.1	51
47	Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nature Reviews Microbiology, 2017, 15, 6-20.	13.6	176
48	The Carboxy Terminus of YCF1 Contains a Motif Conserved throughout >500 Myr of Streptophyte Evolution. Genome Biology and Evolution, 2017, 9, 473-479.	1.1	14
49	Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biology, 2017, 15, e2003769.	2.6	99
50	Heme pathway evolution in kinetoplastid protists. BMC Evolutionary Biology, 2016, 16, 109.	3.2	19
51	Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics. Scientific Reports, 2016, 6, 21016.	1.6	23
52	Evolution: Plumbing the Depths of Diplonemid Diversity. Current Biology, 2016, 26, R1290-R1292.	1.8	11
53	Streptophyte Terrestrialization in Light of Plastid Evolution. Trends in Plant Science, 2016, 21, 467-476.	4.3	136
54	Gene Loss and Error-Prone RNA Editing in the Mitochondrion of <i>Perkinsela</i> , an Endosymbiotic Kinetoplastid. MBio, 2015, 6, e01498-15.	1.8	28

4

JOHN M ARCHIBALD

#	Article	IF	CITATIONS
55	Genomic perspectives on the birth and spread of plastids. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10147-10153.	3.3	121
56	Localization and Evolution of Putative Triose Phosphate Translocators in the Diatom <i>Phaeodactylum tricornutum</i> . Genome Biology and Evolution, 2015, 7, 2955-2969.	1.1	53
57	Endosymbiosis and Eukaryotic Cell Evolution. Current Biology, 2015, 25, R911-R921.	1.8	426
58	Gene transfer in complex cells. Nature, 2015, 524, 423-424.	13.7	9
59	Dual Organellar Targeting of Aminoacyl-tRNA Synthetases in Diatoms and Cryptophytes. Genome Biology and Evolution, 2015, 7, 1728-1742.	1.1	46
60	Reduced Nuclear Genomes Maintain High Gene Transcription Levels. Molecular Biology and Evolution, 2014, 31, 625-635.	3.5	20
61	Overexpression of Molecular Chaperone Genes in Nucleomorph Genomes. Molecular Biology and Evolution, 2014, 31, 1437-1443.	3.5	12
62	Alternatives to vitamin B1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages. ISME Journal, 2014, 8, 2517-2529.	4.4	69
63	The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing. PLoS Biology, 2014, 12, e1001889.	2.6	885
64	Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11407-11412.	3.3	121
65	Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae. BMC Genomics, 2014, 15, 374.	1.2	32
66	Nucleomorph Comparative Genomics. , 2014, , 197-213.		8
67	Ultrastructure and Molecular Phylogeny of the Cryptomonad Goniomonas avonlea sp. nov Protist, 2013, 164, 160-182.	0.6	33
68	Treetrimmer: a method for phylogenetic dataset size reduction. BMC Research Notes, 2013, 6, 145.	0.6	25
69	Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 2012, 492, 59-65.	13.7	377
70	Nucleomorph Genome Sequence of the Cryptophyte Alga Chroomonas mesostigmatica CCMP1168 Reveals Lineage-Specific Gene Loss and Genome Complexity. Genome Biology and Evolution, 2012, 4, 1162-1175.	1.1	50
71	Complete Nucleomorph Genome Sequence of the Nonphotosynthetic Alga Cryptomonas paramecium Reveals a Core Nucleomorph Gene Set. Genome Biology and Evolution, 2011, 3, 44-54.	1.1	62
72	Origin of eukaryotic cells: 40Âyears on. Symbiosis, 2011, 54, 69-86.	1.2	32

5

John M Archibald

#	Article	IF	CITATIONS
73	Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evolutionary Biology, 2011, 11, 105.	3.2	53
74	Genomic Characterization of Neoparamoeba pemaquidensis (Amoebozoa) and Its Kinetoplastid Endosymbiont. Eukaryotic Cell, 2011, 10, 1143-1146.	3.4	20
75	Gene transfer: anything goes in plant mitochondria. BMC Biology, 2010, 8, 147.	1.7	32
76	Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates. Genome Biology and Evolution, 2009, 1, 231-238.	1.1	143
77	The Complete Plastid Genome Sequence of the Secondarily Nonphotosynthetic Alga Cryptomonas paramecium: Reduction, Compaction, and Accelerated Evolutionary Rate. Genome Biology and Evolution, 2009, 1, 439-448.	1.1	70
78	Going, Going, Not Quite Gone: Nucleomorphs as a Case Study in Nuclear Genome Reduction. Journal of Heredity, 2009, 100, 582-590.	1.0	38
79	The Puzzle of Plastid Evolution. Current Biology, 2009, 19, R81-R88.	1.8	413
80	Green Evolution, Green Revolution. Science, 2009, 324, 191-192.	6.0	11
81	Nucleomorph Genomes. Annual Review of Genetics, 2009, 43, 251-264.	3.2	80
82	<i>Lotharella oceanica</i> sp. nov. – a new planktonic chlorarachniophyte studied by light and electron microscopy. Phycologia, 2009, 48, 315-323.	0.6	19
83	The origin and spread of eukaryotic photosynthesis: evolving views in light of genomics. Botanica Marina, 2009, 52, 95-103.	0.6	8
84	NUCLEOMORPH KARYOTYPE DIVERSITY IN THE FRESHWATER CRYPTOPHYTE GENUS <i>CRYPTOMONAS</i> ¹ . Journal of Phycology, 2008, 44, 11-14.	1.0	15
85	NEW MARINE MEMBERS OF THE GENUS <i>HEMISELMIS</i> (CRYPTOMONADALES,) Tj ETQq1 1 0.784314 rgBT	Overlock	19Jf 50 262
86	Complete Sequence and Analysis of the Mitochondrial Genome of Hemiselmis andersenii CCMP644 (Cryptophyceae). BMC Genomics, 2008, 9, 215.	1.2	49
87	Plastid Evolution: Remnant Algal Genes in Ciliates. Current Biology, 2008, 18, R663-R665.	1.8	18
88	The eukaryotic tree of life: endosymbiosis takes its TOL. Trends in Ecology and Evolution, 2008, 23, 268-275.	4.2	267
89	The eocyte hypothesis and the origin of eukaryotic cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20049-20050.	3.3	21
90	Lateral transfer of introns in the cryptophyte plastid genome. Nucleic Acids Research, 2008, 36, 3043-3053.	6.5	34

#	Article	IF	CITATIONS
91	Nucleomorph genome of <i>Hemiselmis andersenii</i> reveals complete intron loss and compaction as a driver of protein structure and function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19908-19913.	3.3	139
92	Nucleomorph genomes: structure, function, origin and evolution. BioEssays, 2007, 29, 392-402.	1.2	103
93	Plastid Genome Sequence of the Cryptophyte Alga Rhodomonas salina CCMP1319: Lateral Transfer of Putative DNA Replication Machinery and a Test of Chromist Plastid Phylogeny. Molecular Biology and Evolution, 2007, 24, 1832-1842.	3.5	100
94	Endosymbiosis: Double-Take on Plastid Origins. Current Biology, 2006, 16, R690-R692.	1.8	24
95	Algal Genomics: Exploring the Imprint of Endosymbiosis. Current Biology, 2006, 16, R1033-R1035.	1.8	14
96	Insight into the Diversity and Evolution of the Cryptomonad Nucleomorph Genome. Molecular Biology and Evolution, 2006, 23, 856-865.	3.5	42
97	Genome complexity in a lean, mean photosynthetic machine. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11433-11434.	3.3	7
98	Jumping Genes and Shrinking Genomes – Probing the Evolution of Eukaryotic Photosynthesis with Genomics. IUBMB Life, 2005, 57, 539-547.	1.5	45
99	Phagotrophy in chlorarachniophyte algae: implications for eukaryotic genome evolution. Journal of Eukaryotic Microbiology, 2005, 52, 7S-27S.	0.8	0
100	Actin and Ubiquitin Protein Sequences Support a Cercozoan/Foraminiferan Ancestry for the Plasmodiophorid Plant Pathogens. Journal of Eukaryotic Microbiology, 2004, 51, 113-118.	0.8	62
101	Novel Ubiquitin Fusion Proteins: Ribosomal Protein P1 and Actin. Journal of Molecular Biology, 2003, 328, 771-778.	2.0	28
102	A Novel Polyubiquitin Structure in Cercozoa and Foraminifera: Evidence for a New Eukaryotic Supergroup. Molecular Biology and Evolution, 2003, 20, 62-66.	3.5	87
103	Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7678-7683.	3.3	241
104	The Chaperonin Genes of Jakobid and Jakobid-Like Flagellates: Implications for Eukaryotic Evolution. Molecular Biology and Evolution, 2002, 19, 422-431.	3.5	59
105	Recycled plastids: a â€~green movement' in eukaryotic evolution. Trends in Genetics, 2002, 18, 577-584.	2.9	212
106	Gene Conversion and the Evolution of Euryarchaeal Chaperonins: A Maximum Likelihood-Based Method for Detecting Conflicting Phylogenetic Signals. Journal of Molecular Evolution, 2002, 55, 232-245.	0.8	30
107	Molecular Chaperones Encoded by a Reduced Nucleus: The Cryptomonad Nucleomorph. Journal of Molecular Evolution, 2001, 52, 490-501.	0.8	27