Seung Hyun Hur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10794300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale, 2013, 5, 2411.	5.6	502
2	The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal, 2011, 170, 226-232.	12.7	393
3	Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. Journal of Materials Chemistry, 2011, 21, 3371-3377.	6.7	357
4	Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 2010, 48, 1945-1951.	10.3	302
5	Highly Conductive Poly(methyl methacrylate) (PMMA)-Reduced Graphene Oxide Composite Prepared by Self-Assembly of PMMA Latex and Graphene Oxide through Electrostatic Interaction. ACS Applied Materials & Interfaces, 2012, 4, 2630-2636.	8.0	244
6	Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor. Journal of Materials Chemistry A, 2013, 1, 208-211.	10.3	217
7	Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen. Journal of Materials Chemistry, 2012, 22, 10530.	6.7	211
8	Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis. Applied Surface Science, 2019, 464, 170-177.	6.1	189
9	One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chemical Communications, 2010, 46, 4375.	4.1	162
10	Three-dimensional hollow balls of graphene–polyaniline hybrids for supercapacitor applications. Chemical Engineering Journal, 2014, 255, 89-96.	12.7	159
11	A highly sensitive enzyme-free glucose sensor based on Co3O4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis. Sensors and Actuators B: Chemical, 2016, 223, 76-82.	7.8	145
12	Highly sensitive non-enzymatic glucose sensor based on Pt nanoparticle decorated graphene oxide hydrogel. Sensors and Actuators B: Chemical, 2015, 210, 618-623.	7.8	143
13	Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors. Sensors and Actuators B: Chemical, 2013, 185, 701-705.	7.8	139
14	Solution-processed ZnO-chemically converted graphene gas sensor. Materials Letters, 2010, 64, 2479-2482.	2.6	129
15	Novel conductive epoxy composites composed of 2-D chemically reduced graphene and 1-D silver nanowire hybrid fillers. Journal of Materials Chemistry, 2012, 22, 8649.	6.7	92
16	Photocatalytic Performance of a Ag/ZnO/CCG Multidimensional Heterostructure Prepared by a Solution-Based Method. Journal of Physical Chemistry C, 2012, 116, 7180-7184.	3.1	92
17	Synthesis and characterization of covalently-grafted graphene–polyaniline nanocomposites and its use in a supercapacitor. Chemical Engineering Journal, 2013, 231, 397-405.	12.7	91
18	Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting NH3 gas at room temperature. Sensors and Actuators B: Chemical, 2014, 194, 45-50.	7.8	90

SEUNG HYUN HUR

#	Article	IF	CITATIONS
19	Highly efficient reduction of graphene oxide using ammonia borane. Chemical Communications, 2013, 49, 6665.	4.1	88
20	Superior conductive polystyrene – chemically converted graphene nanocomposite. Journal of Materials Chemistry, 2011, 21, 11312.	6.7	87
21	Superior dispersion of highly reduced graphene oxide in N,N-dimethylformamide. Journal of Colloid and Interface Science, 2012, 376, 91-96.	9.4	76
22	Liquid-phase exfoliation of graphene in organic solvents with addition of naphthalene. Journal of Colloid and Interface Science, 2014, 418, 37-42.	9.4	76
23	Graphene and its application in fuel cell catalysis: a review. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 218-233.	1.5	71
24	Fabrication of 3D structured ZnO nanorod/reduced graphene oxide hydrogels and their use for photo-enhanced organic dye removal. Journal of Colloid and Interface Science, 2015, 437, 181-186.	9.4	61
25	Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode. Nanoscale Research Letters, 2015, 10, 183.	5.7	57
26	Reduced graphene oxide–titanate hybrids: Morphologic evolution by alkali-solvothermal treatment and applications in water purification. Applied Surface Science, 2012, 258, 4551-4557.	6.1	56
27	Dispersibility of reduced alkylamine-functionalized graphene oxides in organic solvents. Journal of Colloid and Interface Science, 2014, 424, 62-66.	9.4	55
28	NiMn ₂ O ₄ spinel binary nanostructure decorated on three-dimensional reduced graphene oxide hydrogel for bifunctional materials in non-enzymatic glucose sensor. Nanoscale, 2017, 9, 19318-19327.	5.6	48
29	The molecular level control of three-dimensional graphene oxide hydrogel structure by using various diamines. Chemical Engineering Journal, 2014, 246, 64-70.	12.7	47
30	A catalytic and efficient route for reduction of graphene oxide by hydrogen spillover. Journal of Materials Chemistry A, 2013, 1, 1070-1077.	10.3	44
31	Enhanced solvothermal reduction of graphene oxide in a mixed solution of sulfuric acid and organic solvent. Chemical Engineering Journal, 2012, 211-212, 97-103.	12.7	39
32	Green synthesis of silver nanoparticle-decorated porous reduced graphene oxide for antibacterial non-enzymatic glucose sensors. Ionics, 2017, 23, 1525-1532.	2.4	31
33	Synthesis of highly concentrated suspension of chemically converted graphene in organic solvents: Effect of temperature on the extent of reduction and dispersibility. Korean Journal of Chemical Engineering, 2012, 29, 680-685.	2.7	30
34	Effects of the alkylamine functionalization of graphene oxide on the properties of polystyrene nanocomposites. Nanoscale Research Letters, 2014, 9, 265.	5.7	29
35	Ultraviolet light sensor based on graphene quantum dots/reduced graphene oxide hybrid film. Sensors and Actuators A: Physical, 2015, 233, 368-373.	4.1	29
36	Oneâ€step synthesis of a highly conductive graphene–polypyrrole nanofiber composite using a redox reaction and its use in gas sensors. Physica Status Solidi - Rapid Research Letters, 2012, 6, 379-381.	2.4	27

SEUNG HYUN HUR

#	Article	IF	CITATIONS
37	Low-voltage solution-processed graphene transistors based on chemically and solvothermally reduced graphene oxide. Journal of Materials Chemistry, 2011, 21, 13068.	6.7	25
38	Influence of heat treatment on thermally-reduced graphene oxide/TiO2 composites for photocatalytic applications. Korean Journal of Chemical Engineering, 2011, 28, 2236-2241.	2.7	22
39	Solutionâ€processed semitransparent p–n graphene oxide:CNT/ZnO heterojunction diodes for visibleâ€blind UV sensors. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 943-946.	1.8	21
40	Black Carbon-Mediated Reduction of 2,4-Dinitrotoluene by Dithiothreitol. Journal of Environmental Quality, 2013, 42, 815-821.	2.0	20
41	Clean and effective catalytic reduction of graphene oxide using atomic hydrogen spillover on Pt/γ-Al2O3 catalyst. Materials Letters, 2012, 86, 161-164.	2.6	17
42	Polymorphic transformations and optical properties of graphene-based Ag-doped titania nanostructures. Physical Chemistry Chemical Physics, 2014, 16, 23874-23883.	2.8	16
43	Multi-functional NiO/g-C3N4 hybrid nanostructures for energy storage and sensor applications. Korean Journal of Chemical Engineering, 2020, 37, 1589-1598.	2.7	15
44	Preparation of a reduced graphene oxide hydrogel by Ni ions and its use in a supercapacitor electrode. RSC Advances, 2015, 5, 22753-22758.	3.6	14
45	Anion-controlled sulfidation for decoration of graphene oxide with iron cobalt sulfide for rapid sonochemical dyes removal in the absence of light. Applied Catalysis A: General, 2018, 561, 49-58.	4.3	12
46	Redox synthesis of poly (p –phenylenediamine)–reduced graphene oxide for the improvement of electrochemical performance of lithium titanate in lithium–ion battery anode. Journal of Alloys and Compounds, 2017, 709, 248-259.	5.5	11
47	Alternative binder–free electrode based on facile deposition of carbon/graphene–TiO2 on the coin cell anode for a lithium–ion battery. Surface and Coatings Technology, 2017, 315, 359-367.	4.8	7
48	Effect of reduced graphene oxide functionalization by sulfanilic acid on the mechanical properties of poly(styreneâ€ <i>co</i> â€acrylonitrile)/reduced graphene oxide composites. Polymer Composites, 2016, 37, 44-50.	4.6	6
49	Highly Durable Pt catalyst Supported on the Hybrid Carbon Materials for Polymer Electrolyte Membrane Fuel Cell. Journal of the Korean Electrochemical Society, 2014, 17, 201-208.	0.1	2