Laure Gibot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1079352/publications.pdf Version: 2024-02-01

LAUDE CIROT

#	Article	IF	CITATIONS
1	The Pivotal Role of Vascularization in Tissue Engineering. Annual Review of Biomedical Engineering, 2013, 15, 177-200.	12.3	277
2	Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Advanced Drug Delivery Reviews, 2019, 138, 56-67.	13.7	113
3	A Preexisting Microvascular Network Benefits <i>In Vivo</i> Revascularization of a Microvascularized Tissue-Engineered Skin Substitute. Tissue Engineering - Part A, 2010, 16, 3199-3206.	3.1	92
4	Calcium Electroporation: Evidence for Differential Effects in Normal and Malignant Cell Lines, Evaluated in a 3D Spheroid Model. PLoS ONE, 2015, 10, e0144028.	2.5	88
5	Anticancer properties of chitosan on human melanoma are cell line dependent. International Journal of Biological Macromolecules, 2015, 72, 370-379.	7.5	84
6	Cell-based approach for 3D reconstruction of lymphatic capillaries inÂvitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis. Biomaterials, 2016, 78, 129-139.	11.4	75
7	Antitumor drug delivery in multicellular spheroids by electropermeabilization. Journal of Controlled Release, 2013, 167, 138-147.	9.9	67
8	Polymeric Micelles Encapsulating Photosensitizer: Structure/Photodynamic Therapy Efficiency Relation. Biomacromolecules, 2014, 15, 1443-1455.	5.4	62
9	Tissue-engineered 3D human lymphatic microvascular network for in vitro studies of lymphangiogenesis. Nature Protocols, 2017, 12, 1077-1088.	12.0	43
10	Development of a tridimensional microvascularized human skin substitute to study melanoma biology. Clinical and Experimental Metastasis, 2013, 30, 83-90.	3.3	40
11	Elucidation of in vitro cellular steps induced by antitumor treatment with plasma-activated medium. Scientific Reports, 2019, 9, 4866.	3.3	40
12	Pulsed Electric Field Treatment Enhances the Cytotoxicity of Plasma-Activated Liquids in a Three-Dimensional Human Colorectal Cancer Cell Model. Scientific Reports, 2019, 9, 7583.	3.3	37
13	Human caspase 7 is positively controlled by SREBP-1 and SREBP-2. Biochemical Journal, 2009, 420, 473-483.	3.7	35
14	Bladder substitute reconstructed in a physiological pressure environment. Journal of Pediatric Urology, 2011, 7, 276-282.	1.1	30
15	Conjugates of Benzoxazole and GFP Chromophore with Aggregationâ€Induced Enhanced Emission: Influence of the Chain Length on the Formation of Particles and on the Dye Uptake by Living Cells. Small, 2016, 12, 6602-6612.	10.0	28
16	Calcium Delivery by Electroporation Induces In Vitro Cell Death through Mitochondrial Dysfunction without DNA Damages. Cancers, 2020, 12, 425.	3.7	28
17	Efficient In Vitro Electropermeabilization of Reconstructed Human Dermal Tissue. Journal of Membrane Biology, 2015, 248, 903-908.	2.1	21
18	Crosslinked polymeric self-assemblies as an efficient strategy for photodynamic therapy on a 3D cell culture. RSC Advances, 2016, 6, 69984-69998.	3.6	17

LAURE GIBOT

#	Article	IF	CITATIONS
19	Importance of endogenous extracellular matrix in biomechanical properties of human skin model. Biofabrication, 2017, 9, 025017.	7.1	17
20	Rational design of block copolymer self-assemblies in photodynamic therapy. Beilstein Journal of Nanotechnology, 2020, 11, 180-212.	2.8	17
21	3D Spheroids' Sensitivity to Electric Field Pulses Depends on Their Size. Journal of Membrane Biology, 2013, 246, 745-750.	2.1	16
22	Self-assembled polymeric vectors mixtures: characterization of the polymorphism and existence of synergistic effects in photodynamic therapy. Nanotechnology, 2016, 27, 315102.	2.6	16
23	Gene transfer by pulsed electric field is highly promising in cutaneous wound healing. Expert Opinion on Biological Therapy, 2016, 16, 67-77.	3.1	16
24	Vascular and extracellular matrix remodeling by physical approaches to improve drug delivery at the tumor site. Expert Opinion on Drug Delivery, 2020, 17, 1703-1726.	5.0	16
25	Amphiphilic polymers based on polyoxazoline as relevant nanovectors for photodynamic therapy. Journal of Materials Chemistry B, 2019, 7, 4973-4982.	5.8	15
26	Progress and Prospects: The Use of 3D Spheroid Model as a Relevant Way to Study and Optimize DNA Electrotransfer. Current Gene Therapy, 2013, 13, 175-181.	2.0	15
27	A journey from the endothelium to the tumor tissue: distinct behavior between PEO-PCL micelles and polymersomes nanocarriers. Drug Delivery, 2018, 25, 1766-1778.	5.7	14
28	Hybrid Polymeric Nanostructures Stabilized by Zirconium and Gadolinium Ions for Use as Magnetic Resonance Imaging Contrast Agents. ACS Applied Nano Materials, 2021, 4, 4974-4982.	5.0	14
29	Role of Polymer Micelles in the Delivery of Photodynamic Therapy Agent to Liposomes and Cells. Cancers, 2020, 12, 384.	3.7	12
30	Gene Electrotransfer in 3D Reconstructed Human Dermal Tissue. Current Gene Therapy, 2016, 16, 75-82.	2.0	11
31	Drug Release by Direct Jump from Poly(ethylene-glycol-b-ε-caprolactone) Nano-Vector to Cell Membrane. Molecules, 2016, 21, 1643.	3.8	9
32	How transient alterations of organelles in mammalian cells submitted to electric field may explain some aspects of gene electrotransfer process. Bioelectrochemistry, 2016, 112, 166-172.	4.6	7
33	Electroporation does not affect human dermal fibroblast proliferation and migration properties directly but indirectly via the secretome. Bioelectrochemistry, 2020, 134, 107531.	4.6	7
34	Evaluations of Acute and Sub-Acute Biological Effects of Narrowband and Moderate-Band High Power Electromagnetic Waves on Cellular Spheroids. Scientific Reports, 2019, 9, 15324.	3.3	5
35	Mixed Spheroids as a Relevant 3D Biological Tool to Understand Therapeutic Window of Electrochemotherapy. IFMBE Proceedings, 2016, , 200-203.	0.3	5
36	High power electromagnetic pulse applicators for evaluation of biological effects induced by electromagnetic radiation waves. RSC Advances, 2018, 8, 16319-16329.	3.6	3

LAURE GIBOT

#	Article	IF	CITATIONS
37	Encapsulation of a cationic antimicrobial peptide into self-assembled polyion complex nano-objects enhances its antitumor properties. Journal of Molecular Structure, 2022, 1249, 131482.	3.6	3
38	Electroporation in Scars/Wound Healing and Skin Response. , 2016, , 1-18.		3
39	Transfer of small interfering RNA by electropermeabilization in tumor spheroids. Bioelectrochemistry, 2021, 141, 107848.	4.6	2
40	Pulsed Electric Fields Induce Extracellular Matrix Remodeling through Matrix Metalloproteinases Activation and Decreased Collagen Production. Journal of Investigative Dermatology, 2022, 142, 1326-1337.e9.	0.7	2
41	Plane wave in vitro exposure of biological samples, geometries considerations. , 2014, , .		1
42	How Imaging Membrane and Cell Processes Involved in Electropermeabilization Can Improve Its Development in Cell Biology and in Clinics. Advances in Anatomy, Embryology and Cell Biology, 2017, 227, 107-118.	1.6	1
43	Cold helium plasma jet does not stimulate collagen remodeling in a 3D human dermal substitute. Bioelectrochemistry, 2022, 143, 107985.	4.6	1
44	New efficient high power microwave applicator enabling optimal E-field coupling and homogeneity in biological sample. , 2015, , .		0
45	3D Tissue Models to Bridge the Gap Between Cell Culture and Tissue in Assessing Electroporation. , 2016, , 1-15.		0
46	3D Tissue Models to Bridge the Gap Between Cell Culture and Tissue in Assessing Electroporation. , 2017, , 255-269.		0
47	Electroporation in Scars/Wound Healing and Skin Response. , 2017, , 531-548.		0
48	Electroporation Applications in Wound Healing. Frontiers in Nanobiomedical Research, 2017, , 355-377.	0.1	0