
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1078588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Riboflavin Stabilizes Abasic, Oxidized G-Quadruplex Structures. Biochemistry, 2022, 61, 265-275.	2.5	3
2	Solvation Effects in Organic Chemistry. Journal of Organic Chemistry, 2022, 87, 1599-1601.	3.2	11
3	Collateral Damage Occurs When Using Photosensitizer Probes to Detect or Modulate Nucleic Acid Modifications. Angewandte Chemie - International Edition, 2022, 61, e202110649.	13.8	6
4	Collateral Damage Occurs When Using Photosensitizer Probes to Detect or Modulate Nucleic Acid Modifications. Angewandte Chemie, 2022, 134, .	2.0	0
5	Identification of the Major Product of Guanine Oxidation in DNA by Ozone. Chemical Research in Toxicology, 2022, 35, 1809-1813.	3.3	5
6	Hysteresis in polyâ€2â€2â€deoxycytidine iâ€motif folding is impacted by the method of analysis as well as loop and stem lengths. Biopolymers, 2021, 112, e23389.	2.4	4
7	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
8	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
9	Kool chemistry of <scp>DNA</scp> and <scp>RNA</scp> biopolymers. Biopolymers, 2021, 112, e23417.	2.4	0
10	Deciphering nucleic acid knots. Nature Chemistry, 2021, 13, 618-619.	13.6	0
11	Oxidative stress-mediated epigenetic regulation by G-quadruplexes. NAR Cancer, 2021, 3, zcab038.	3.1	31
12	Nanopore Dwell Time Analysis Permits Sequencing and Conformational Assignment of Pseudouridine in SARS-CoV-2. ACS Central Science, 2021, 7, 1707-1717.	11.3	46
13	Binding of AP Endonuclease-1 to G-Quadruplex DNA Depends on the N-Terminal Domain, Mg ²⁺ , and Ionic Strength. ACS Bio & Med Chem Au, 2021, 1, 44-56.	3.7	17
14	Chemistry of ROS-Mediated Oxidation to the Guanine Base in DNA and its Biological Consequences. International Journal of Radiation Biology, 2021, , 1-24.	1.8	8
15	Interplay of Guanine Oxidation and G-Quadruplex Folding in Gene Promoters. Journal of the American Chemical Society, 2020, 142, 1115-1136.	13.7	99
16	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
17	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
18	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0

#	Article	IF	CITATIONS
19	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	Ο
20	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
21	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	Ο
22	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
23	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
24	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
25	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		О
26	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
27	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	Ο
28	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
29	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	Ο
30	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
31	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	Ο
32	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
33	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
34	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
35	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
36	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0

#	Article	IF	CITATIONS
37	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
38	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
39	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
40	On the irrelevancy of hydroxyl radical to DNA damage from oxidative stress and implications for epigenetics. Chemical Society Reviews, 2020, 49, 6524-6528.	38.1	68
41	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
42	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
43	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
44	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
45	Iron Fenton oxidation of 2′-deoxyguanosine in physiological bicarbonate buffer yields products consistent with the reactive oxygen species carbonate radical anion not the hydroxyl radical. Chemical Communications, 2020, 56, 9779-9782.	4.1	25
46	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
47	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
48	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
49	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
50	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
51	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
52	Welcoming Our New Sister Journal, Accounts of Materials Research. Accounts of Chemical Research, 2020, 53, 2495-2495.	15.6	0
53	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
54	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0

#	Article	IF	CITATIONS
55	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
56	Potential C-Quadruplex Forming Sequences and <i>N</i> ⁶ -Methyladenosine Colocalize at Human Pre-mRNA Intron Splice Sites. ACS Chemical Biology, 2020, 15, 1292-1300.	3.4	18
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
58	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
59	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
60	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
61	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
62	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
63	Key References: A New Feature of <i>Accounts</i> . Accounts of Chemical Research, 2020, 53, 1101-1101.	15.6	0
64	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
65	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
66	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
67	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
68	Cruciform DNA Sequences in Gene Promoters Can Impact Transcription upon Oxidative Modification of 2′-Deoxyguanosine. Biochemistry, 2020, 59, 2616-2626.	2.5	9
69	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
70	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
71	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
72	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0

#	Article	IF	CITATIONS
73	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	Ο
74	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
75	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	Ο
76	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
77	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	Ο
78	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
79	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
80	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13
81	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
82	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
83	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
84	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
85	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	Ο
86	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
87	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
88	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
89	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
90	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0

#	Article	IF	CITATIONS
91	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
92	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
93	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
94	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
95	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
96	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
97	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
98	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
99	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
100	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
101	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
102	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
103	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
104	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
105	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
106	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
107	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
108	First Accounts: The Capstone of a Tenure Tour. Accounts of Chemical Research, 2020, 53, 1003-1004.	15.6	0

#	Article	IF	CITATIONS
109	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
110	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
111	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	Ο
112	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
113	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	Ο
114	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
115	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
116	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
117	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
118	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
119	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
120	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
121	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
122	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
123	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
124	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
125	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
126	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0

#	Article	IF	CITATIONS
127	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
128	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
129	RNA polymerase II stalls on oxidative DNA damage via a torsion-latch mechanism involving lone pair–i̇́€ and CH–i̇́€ interactions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9338-9348.	7.1	26
130	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
131	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
132	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
133	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
134	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
135	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
136	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
137	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
138	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
139	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
140	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
141	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
142	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
143	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
144	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0

#	Article	IF	CITATIONS
145	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
146	Structural Elucidation of Bisulfite Adducts to Pseudouridine That Result in Deletion Signatures during Reverse Transcription of RNA. Journal of the American Chemical Society, 2019, 141, 16450-16460.	13.7	23
147	Human <i>NEIL3</i> Gene Expression Regulated by Epigenetic-Like Oxidative DNA Modification. Journal of the American Chemical Society, 2019, 141, 11036-11049.	13.7	49
148	Computational Study of the Formation of C8, C5, and C4 Guanine:Lysine Adducts via Oxidation of Guanine by Sulfate Radical Anion. Journal of Physical Chemistry A, 2019, 123, 5150-5163.	2.5	7
149	Synthesis of Site-Specific Crown Ether Adducts to DNA Abasic Sites: 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine and 2′-Deoxycytidine. Methods in Molecular Biology, 2019, 1973, 15-25.	0.9	1
150	Location dependence of the transcriptional response of a potential G-quadruplex in gene promoters under oxidative stress. Nucleic Acids Research, 2019, 47, 5049-5060.	14.5	44
151	Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6784-6789.	7.1	162
152	Colocalization of m ⁶ A and G-Quadruplex-Forming Sequences in Viral RNA (HIV, Zika,) Tj ETQq0 0 0 ACS Central Science, 2019, 5, 218-228.	rgBT /Ovei 11.3	lock 10 Tf 50 39
153	Oxidative Modification of Guanine in a Potential Z-DNA-Forming Sequence of a Gene Promoter Impacts Gene Expression. Chemical Research in Toxicology, 2019, 32, 899-909.	3.3	15
154	Impact of DNA Oxidation on Toxicology: From Quantification to Genomics. Chemical Research in Toxicology, 2019, 32, 345-347.	3.3	6
155	Oxidative Modification of the Potential G-Quadruplex Sequence in the <i>PCNA</i> Gene Promoter Can Turn on Transcription. Chemical Research in Toxicology, 2019, 32, 437-446.	3.3	45
156	Effect of Oxidative Damage on Charge and Spin Transport in DNA. Journal of the American Chemical Society, 2019, 141, 123-126.	13.7	32
157	Nanopore Analysis of the 5-Guanidinohydantoin to Iminoallantoin Isomerization in Duplex DNA. Journal of Organic Chemistry, 2018, 83, 3973-3978.	3.2	5
158	Accounts: 50 Years of a Great Idea. Accounts of Chemical Research, 2018, 51, 1-2.	15.6	1
159	Human DNA Repair Genes Possess Potential G-Quadruplex Sequences in Their Promoters and 5′-Untranslated Regions. Biochemistry, 2018, 57, 991-1002.	2.5	55
160	The Fifth Domain in the G-Quadruplex-Forming Sequence of the Human <i>NEIL3</i> Promoter Locks DNA Folding in Response to Oxidative Damage. Biochemistry, 2018, 57, 2958-2970.	2.5	20
161	Unusual Isothermal Hysteresis in DNA i-Motif pHÂTransitions: A Study of the RAD17 Promoter Sequence. Biophysical Journal, 2018, 114, 1804-1815.	0.5	23
162	Single-Molecule Titration in a Protein Nanoreactor Reveals the Protonation/Deprotonation Mechanism of a C:C Mismatch in DNA. Journal of the American Chemical Society, 2018, 140, 5153-5160.	13.7	24

#	Article	IF	CITATIONS
163	Characterization of G-Quadruplexes in <i>Chlamydomonas reinhardtii</i> and the Effects of Polyamine and Magnesium Cations on Structure and Stability. Biochemistry, 2018, 57, 6551-6561.	2.5	5
164	8-OxoG Formation: Impact in Gene Promoters on Transcription and Mapping Studies. Free Radical Biology and Medicine, 2018, 128, S10.	2.9	0
165	\hat{I}^3 -Hemolysin Nanopore Is Sensitive to Guanine-to-Inosine Substitutions in Double-Stranded DNA at the Single-Molecule Level. Journal of the American Chemical Society, 2018, 140, 14224-14234.	13.7	26
166	Case studies on potential G-quadruplex-forming sequences from the bacterial orders Deinococcales and Thermales derived from a survey of published genomes. Scientific Reports, 2018, 8, 15679.	3.3	38
167	Rapid Screen of Potential i-Motif Forming Sequences in DNA Repair Gene Promoters. ACS Omega, 2018, 3, 9630-9635.	3.5	24
168	The <i>RAD17</i> Promoter Sequence Contains a Potential Tail-Dependent G-Quadruplex That Downregulates Gene Expression upon Oxidative Modification. ACS Chemical Biology, 2018, 13, 2577-2584.	3.4	30
169	Unraveling the 4n â^' 1 rule for DNA i-motif stability: base pairs vs. loop lengths. Organic and Biomolecular Chemistry, 2018, 16, 4537-4546.	2.8	29
170	Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2604-2609.	7.1	269
171	Sequencing the Mouse Genome for the Oxidatively Modified Base 8-Oxo-7,8-dihydroguanine by OG-Seq. Journal of the American Chemical Society, 2017, 139, 2569-2572.	13.7	120
172	Dynamics of a DNA Mismatch Site Held in Confinement Discriminate Epigenetic Modifications of Cytosine. Journal of the American Chemical Society, 2017, 139, 2750-2756.	13.7	34
173	50 Years of Accounts. Accounts of Chemical Research, 2017, 50, 1-1.	15.6	4
174	Interrogation of Base Pairing of the Spiroiminodihydantoin Diastereomers Using the α-Hemolysin Latch. Biochemistry, 2017, 56, 1596-1603.	2.5	8
175	Computational Study of Oxidation of Guanine by Singlet Oxygen (¹ Δ _g) and Formation of Guanine:Lysine Crossâ€Links. Chemistry - A European Journal, 2017, 23, 5804-5813.	3.3	34
176	8-Oxo-7,8-dihydroguanine, friend and foe: Epigenetic-like regulator versus initiator of mutagenesis. DNA Repair, 2017, 56, 75-83.	2.8	110
177	4 <i>n</i> –1 Is a "Sweet Spot―in DNA i-Motif Folding of 2′-Deoxycytidine Homopolymers. Journal of the American Chemical Society, 2017, 139, 4682-4689.	13.7	100
178	Holy Grails in Chemistry, Part II. Accounts of Chemical Research, 2017, 50, 445-445.	15.6	9
179	Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radical Biology and Medicine, 2017, 107, 35-52.	2.9	97
180	8-Oxo-7,8-dihydroguanine in the Context of a Gene Promoter G-Quadruplex Is an On–Off Switch for Transcription. ACS Chemical Biology, 2017, 12, 2417-2426.	3.4	82

#	Article	IF	CITATIONS
181	Reverse Transcription Past Products of Guanine Oxidation in RNA Leads to Insertion of A and C opposite 8-Oxo-7,8-dihydroguanine and A and G opposite 5-Guanidinohydantoin and Spiroiminodihydantoin Diastereomers. Biochemistry, 2017, 56, 5053-5064.	2.5	21
182	8-Oxo-7,8-dihydro-2′-deoxyguanosine and abasic site tandem lesions are oxidation prone yielding hydantoin products that strongly destabilize duplex DNA. Organic and Biomolecular Chemistry, 2017, 15, 8341-8353.	2.8	18
183	Sequencing DNA for the Oxidatively Modified Base 8-Oxo-7,8-Dihydroguanine. Methods in Enzymology, 2017, 591, 187-210.	1.0	7
184	Energetics of base flipping at a DNA mismatch site confined at the latch constriction of α-hemolysin. Faraday Discussions, 2016, 193, 471-485.	3.2	8
185	Kinetics of T3-DNA Ligase-Catalyzed Phosphodiester Bond Formation Measured Using the α-Hemolysin Nanopore. ACS Nano, 2016, 10, 11127-11135.	14.6	20
186	Computational Study of the Radical Mediated Mechanism of the Formation of C8, C5, and C4 Guanine:Lysine Adducts in the Presence of the Benzophenone Photosensitizer. Chemical Research in Toxicology, 2016, 29, 1396-1409.	3.3	16
187	Zika Virus Genomic RNA Possesses Conserved G-Quadruplexes Characteristic of the Flaviviridae Family. ACS Infectious Diseases, 2016, 2, 674-681.	3.8	117
188	UV-Induced Proton-Coupled Electron Transfer in Cyclic DNA Miniduplexes. Journal of the American Chemical Society, 2016, 138, 7395-7401.	13.7	28
189	Evolution of Accounts. Accounts of Chemical Research, 2016, 49, 1-2.	15.6	1
190	Unzipping of A-Form DNA-RNA, A-Form DNA-PNA, and B-Form DNA-DNA in the α-Hemolysin Nanopore. Biophysical Journal, 2016, 110, 306-314.	0.5	26
191	pH-Dependent Equilibrium between 5-Guanidinohydantoin and Iminoallantoin Affects Nucleotide Insertion Opposite the DNA Lesion. Journal of Organic Chemistry, 2016, 81, 351-359.	3.2	27
192	Sequencing of DNA Lesions Facilitated by Site-Specific Excision via Base Excision Repair DNA Glycosylases Yielding Ligatable Gaps. Journal of the American Chemical Society, 2016, 138, 491-494.	13.7	32
193	Human Telomere G-Quadruplexes with Five Repeats Accommodate 8-Oxo-7,8-dihydroguanine by Looping out the DNA Damage. ACS Chemical Biology, 2016, 11, 500-507.	3.4	32
194	Base Flipping within the α-Hemolysin Latch Allows Single-Molecule Identification of Mismatches in DNA. Journal of the American Chemical Society, 2016, 138, 594-603.	13.7	42
195	α-Hemolysin nanopore studies reveal strong interactions between biogenic polyamines and DNA hairpins. Mikrochimica Acta, 2016, 183, 973-979.	5.0	4
196	Computational studies of electronic circular dichroism spectra predict absolute configuration assignments for the guanine oxidation product 5-carboxamido-5-formamido-2-iminohydantoin. Tetrahedron Letters, 2015, 56, 3191-3196.	1.4	12
197	The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures. Nucleic Acids Research, 2015, 43, 4039-4054.	14.5	129
198	Identification of DNA lesions using a third base pair for amplification and nanopore sequencing. Nature Communications, 2015, 6, 8807.	12.8	71

#	Article	IF	CITATIONS
199	Photoinduced Electron Transfer in DNA: Charge Shift Dynamics Between 8-Oxo-Guanine Anion and Adenine. Journal of Physical Chemistry B, 2015, 119, 7491-7502.	2.6	31
200	Changes Afoot!. Accounts of Chemical Research, 2015, 48, 153-153.	15.6	0
201	Spirodi(iminohydantoin) Products from Oxidation of 2′-Deoxyguanosine in the Presence of NH ₄ Cl in Nucleoside and Oligodeoxynucleotide Contexts. Journal of Organic Chemistry, 2015, 80, 711-721.	3.2	16
202	Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the <i>α</i> -hemolysin nanopore. Nanotechnology, 2015, 26, 074002.	2.6	21
203	A Role for the Fifth G-Track in G-Quadruplex Forming Oncogene Promoter Sequences during Oxidative Stress: Do These "Spare Tires―Have an Evolved Function?. ACS Central Science, 2015, 1, 226-233.	11.3	125
204	Unfolding Kinetics of the Human Telomere i-Motif Under a 10 pN Force Imposed by the α-Hemolysin Nanopore Identify Transient Folded-State Lifetimes at Physiological pH. Journal of the American Chemical Society, 2015, 137, 9053-9060.	13.7	32
205	5-Carboxamido-5-formamido-2-iminohydantoin, in Addition to 8-oxo-7,8-Dihydroguanine, Is the Major Product of the Iron-Fenton or X-ray Radiation-Induced Oxidation of Guanine under Aerobic Reducing Conditions in Nucleoside and DNA Contexts. Journal of Organic Chemistry, 2015, 80, 6996-7007.	3.2	47
206	Rates of Chemical Cleavage of DNA and RNA Oligomers Containing Guanine Oxidation Products. Chemical Research in Toxicology, 2015, 28, 1292-1300.	3.3	35
207	Nanopore Detection of 8-Oxoguanine in the Human Telomere Repeat Sequence. ACS Nano, 2015, 9, 4296-4307.	14.6	71
208	Guanine Oxidation Product 5-Carboxamido-5-formamido-2-iminohydantoin Induces Mutations When Bypassed by DNA Polymerases and Is a Substrate for Base Excision Repair. Chemical Research in Toxicology, 2015, 28, 1861-1871.	3.3	15
209	Solving 21st Century Problems in Biological Inorganic Chemistry Using Synthetic Models. Accounts of Chemical Research, 2015, 48, 2659-2660.	15.6	6
210	Differentiation of G:C <i>vs</i> A:T and G:C <i>vs</i> G:mC Base Pairs in the Latch Zone of α-Hemolysin. ACS Nano, 2015, 9, 11325-11332.	14.6	18
211	Efficient UV-induced charge separation and recombination in an 8-oxoguanine-containing dinucleotide. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11612-11617.	7.1	64
212	Singleâ€molecule detection of a guanine(C8)â€ŧhymine(N3) crossâ€link using ion channel recording. Journal of Physical Organic Chemistry, 2014, 27, 247-251.	1.9	5
213	Single-Molecule Analysis of Thymine Dimer-Containing G-Quadruplexes Formed from the Human Telomere Sequence. Biochemistry, 2014, 53, 7484-7493.	2.5	15
214	Effect of an Electrolyte Cation on Detecting DNA Damage with the Latch Constriction of α-Hemolysin. Journal of Physical Chemistry Letters, 2014, 5, 3781-3786.	4.6	19
215	Internal vs Fishhook Hairpin DNA: Unzipping Locations and Mechanisms in the α-Hemolysin Nanopore. Journal of Physical Chemistry B, 2014, 118, 12873-12882.	2.6	29
216	Temperature and Electrolyte Optimization of the α-Hemolysin Latch Sensing Zone for Detection of Base Modification in Double-Stranded DNA. Biophysical Journal, 2014, 107, 924-931.	0.5	22

#	Article	IF	CITATIONS
217	Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14325-14331.	7.1	62
218	Crystal Structure of DNA Polymerase β with DNA Containing the Base Lesion Spiroiminodihydantoin in a Templating Position. Biochemistry, 2014, 53, 2075-2077.	2.5	18
219	G-Quadruplex Folds of the Human Telomere Sequence Alter the Site Reactivity and Reaction Pathway of Guanine Oxidation Compared to Duplex DNA. Chemical Research in Toxicology, 2013, 26, 593-607.	3.3	133
220	Repair of Hydantoin Lesions and Their Amine Adducts in DNA by Base and Nucleotide Excision Repair. Journal of the American Chemical Society, 2013, 135, 13851-13861.	13.7	53
221	Endonuclease and exonuclease activities on oligodeoxynucleotides containing spiroiminodihydantoin depend on the sequence context and the lesion stereochemistry. New Journal of Chemistry, 2013, 37, 3440.	2.8	13
222	Structural Destabilization of DNA Duplexes Containing Single-Base Lesions Investigated by Nanopore Measurements. Biochemistry, 2013, 52, 7870-7877.	2.5	28
223	Base-Excision Repair Activity of Uracil-DNA Glycosylase Monitored Using the Latch Zone of α-Hemolysin. Journal of the American Chemical Society, 2013, 135, 19347-19353.	13.7	56
224	Reconciliation of Chemical, Enzymatic, Spectroscopic and Computational Data To Assign the Absolute Configuration of the DNA Base Lesion Spiroiminodihydantoin. Journal of the American Chemical Society, 2013, 135, 18191-18204.	13.7	64
225	Ultrafast Excited-State Dynamics and Vibrational Cooling of 8-Oxo-7,8-dihydro-2′-deoxyguanosine in D ₂ O. Journal of Physical Chemistry A, 2013, 117, 12851-12857.	2.5	18
226	Ribozyme takes its vitamins. Nature Chemistry, 2013, 5, 900-901.	13.6	2
227	Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin. DNA Repair, 2013, 12, 1159-1164.	2.8	80
228	Interactions of the Human Telomere Sequence with the Nanocavity of the α-Hemolysin Ion Channel Reveal Structure-Dependent Electrical Signatures for Hybrid Folds. Journal of the American Chemical Society, 2013, 135, 8562-8570.	13.7	49
229	Electrical Current Signatures of DNA Base Modifications in Single Molecules Immobilized in the αâ€Hemolysin Ion Channel. Israel Journal of Chemistry, 2013, 53, 417-430.	2.3	13
230	Neil3 and NEIL1 DNA Glycosylases Remove Oxidative Damages from Quadruplex DNA and Exhibit Preferences for Lesions in the Telomeric Sequence Context. Journal of Biological Chemistry, 2013, 288, 27263-27272.	3.4	103
231	Crown ether–electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11504-11509.	7.1	93
232	Origins of Chemical Evolution. Accounts of Chemical Research, 2012, 45, 2023-2024.	15.6	8
233	Whence Flavins? Redox-Active Ribonucleotides Link Metabolism and Genome Repair to the RNA World. Accounts of Chemical Research, 2012, 45, 2151-2159.	15.6	27
234	Modulation of the current signatures of DNA abasic site adducts in the α-hemolysin ion channel. Chemical Communications, 2012, 48, 11410.	4.1	12

#	Article	IF	CITATIONS
235	Unzipping Kinetics of Duplex DNA Containing Oxidized Lesions in an α-Hemolysin Nanopore. Journal of the American Chemical Society, 2012, 134, 11006-11011.	13.7	74
236	Structural Context Effects in the Oxidation of 8-Oxo-7,8-dihydro-2′-deoxyguanosine to Hydantoin Products: Electrostatics, Base Stacking, and Base Pairing. Journal of the American Chemical Society, 2012, 134, 15091-15102.	13.7	70
237	Promiscuous 8-Alkoxyadenosines in the Guide Strand of an SiRNA: Modulation of Silencing Efficacy and Off-Pathway Protein Binding. Journal of the American Chemical Society, 2012, 134, 17643-17652.	13.7	12
238	Photorepair of cyclobutane pyrimidine dimers by 8â€oxopurine nucleosides. Journal of Physical Organic Chemistry, 2012, 25, 574-577.	1.9	17
239	8-Oxoguanosine Switches Modulate the Activity of Alkylated siRNAs by Controlling Steric Effects in the Major versus Minor Grooves. Journal of the American Chemical Society, 2011, 133, 6343-6351.	13.7	12
240	Synthesis of <i>N</i> ² -Alkyl-8-oxo-7,8-dihydro-2′-deoxyguanosine Derivatives and Effects of These Modifications on RNA Duplex Stability. Journal of Organic Chemistry, 2011, 76, 720-723.	3.2	10
241	Sequence-Specific Single-Molecule Analysis of 8-Oxo-7,8-dihydroguanine Lesions in DNA Based on Unzipping Kinetics of Complementary Probes in Ion Channel Recordings. Journal of the American Chemical Society, 2011, 133, 14778-14784.	13.7	37
242	A Prebiotic Role for 8-Oxoguanosine as a Flavin Mimic in Pyrimidine Dimer Photorepair. Journal of the American Chemical Society, 2011, 133, 14586-14589.	13.7	62
243	Copper/H ₂ O ₂ -Mediated Oxidation of 2â€2-Deoxyguanosine in the Presence of 2-Naphthol Leads to the Formation of Two Distinct Isomeric Adducts. Journal of Organic Chemistry, 2011, 76, 7953-7963.	3.2	8
244	Characterization of 2′-deoxyguanosine oxidation products observed in the Fenton-like system Cu(ii)/H2O2/reductant in nucleoside and oligodeoxynucleotide contexts. Organic and Biomolecular Chemistry, 2011, 9, 3338.	2.8	74
245	Chemical Modification of siRNA Bases To Probe and Enhance RNA Interference. Journal of Organic Chemistry, 2011, 76, 7295-7300.	3.2	87
246	Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18802-18807.	7.1	83
247	Choreographing DNA. , 2011, , 165-176.		0
248	Comparison of transition metal-mediated oxidation reactions of guanine in nucleoside and single-stranded oligodeoxynucleotide contexts. Inorganica Chimica Acta, 2011, 369, 240-246.	2.4	23
249	Oxidation of 9-β-d-ribofuranosyl uric acid by one-electron oxidants versus singlet oxygen and its implications for the oxidation of 8-oxo-7,8-dihydroguanosine. Tetrahedron Letters, 2011, 52, 2176-2180.	1.4	5
250	The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair, 2010, 9, 177-190.	2.8	43
251	The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4925-4930.	7.1	169
252	Surviving an Oxygen Atmosphere: DNA Damage and Repair. ACS Symposium Series, 2010, 2009, 147-156.	0.5	9

#	Article	IF	CITATIONS
253	Nanopore Detection of 8-Oxo-7,8-dihydro-2′-deoxyguanosine in Immobilized Single-Stranded DNA via Adduct Formation to the DNA Damage Site. Journal of the American Chemical Society, 2010, 132, 17992-17995.	13.7	91
254	Mutation versus Repair: NEIL1 Removal of Hydantoin Lesions in Single-Stranded, Bulge, Bubble, and Duplex DNA Contexts. Biochemistry, 2010, 49, 1658-1666.	2.5	85
255	Crystal Structure of a Replicative DNA Polymerase Bound to the Oxidized Guanine Lesion Guanidinohydantoin [,] . Biochemistry, 2010, 49, 2502-2509.	2.5	37
256	Finding needles in DNA stacks. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16010-16011.	7.1	0
257	Plant and fungal Fpg homologs are formamidopyrimidine DNA glycosylases but not 8-oxoguanine DNA glycosylases. DNA Repair, 2009, 8, 643-653.	2.8	33
258	Mechanistic Aspects of the Formation of Guanidinohydantoin from Spiroiminodihydantoin under Acidic Conditions. Chemical Research in Toxicology, 2009, 22, 526-535.	3.3	27
259	Electronic Structure of DNA - Unique Properties of 8-Oxoguanosine. Journal of the American Chemical Society, 2009, 131, 89-95.	13.7	24
260	DNAâ^'Protein Cross-links between Guanine and Lysine Depend on the Mechanism of Oxidation for Formation of C5 Vs C8 Guanosine Adducts. Journal of the American Chemical Society, 2008, 130, 703-709.	13.7	129
261	Formation of Tricyclic [4.3.3.0] Adducts between 8-Oxoguanosine and Tyrosine under Conditions of Oxidative DNAâ^Protein Cross-Linking. Journal of the American Chemical Society, 2008, 130, 10080-10081.	13.7	15
262	Superior Removal of Hydantoin Lesions Relative to Other Oxidized Bases by the Human DNA Glycosylase hNEIL1. Biochemistry, 2008, 47, 7137-7146.	2.5	127
263	An Exploration of Mechanisms for the Transformation of 8-Oxoguanine to Guanidinohydantoin and Spiroiminodihydantoin by Density Functional Theory. Journal of the American Chemical Society, 2008, 130, 5245-5256.	13.7	85
264	In Vitro Ligation of Oligodeoxynucleotides Containing C8-Oxidized Purine Lesions Using Bacteriophage T4 DNA Ligaseâ€. Biochemistry, 2007, 46, 3734-3744.	2.5	23
265	Unusual Structural Features of Hydantoin Lesions Translate into Efficient Recognition by Escherichia coli Fpg. Biochemistry, 2007, 46, 9355-9365.	2.5	29
266	Exploration of Mechanisms for the Transformation of 8-Hydroxy Guanine Radical to FAPyG by Density Functional Theory. Chemical Research in Toxicology, 2007, 20, 432-444.	3.3	46
267	Human endonuclease VIII-like (NEIL) proteins in the giant DNA Mimivirus. DNA Repair, 2007, 6, 1629-1641.	2.8	36
268	Synthesis and Characterization of the Oxidized dGTP Lesions Spiroiminodihydantoin-2â€~-deoxynucleoside-5â€~- triphosphate and Guanidinohydantoin-2â€~-deoxynucleoside-5â€~- triphosphate. Journal of Organic Chemistry, 2006, 71, 2181-2184.	3.2	16
269	Oxidatively Induced DNAâ ^{°°} Protein Cross-Linking between Single-Stranded Binding Protein and Oligodeoxynucleotides Containing 8-Oxo-7,8-dihydro-2â€ ^{°-} deoxyguanosineâ€. Biochemistry, 2005, 44, 5660-5671.	2.5	62
270	Synthesis of a Metallopeptideâ^'PNA Conjugate and Its Oxidative Cross-Linking to a DNA Target. Bioconjugate Chemistry, 2005, 16, 178-183.	3.6	18

#	Article	IF	CITATIONS
271	Spermine Participates in Oxidative Damage of Guanosine and 8-Oxoguanosine Leading to Deoxyribosylurea Formation. Journal of the American Chemical Society, 2004, 126, 9540-9541.	13.7	65
272	Mechanism of Two-Electron Oxidation of Deoxyguanosine 5â€~-Monophosphate by a Platinum(IV) Complex. Journal of the American Chemical Society, 2004, 126, 591-598.	13.7	45
273	The Cys-Xaa-His metal-binding motif: {N} versus {S} coordination and nickel-mediated formation of cysteinyl sulfinic acid. Journal of Biological Inorganic Chemistry, 2003, 8, 601-610.	2.6	21
274	Recognition and Removal of Oxidized Guanines in Duplex DNA by the Base Excision Repair Enzymes hOGG1, yOGG1, and yOGG2â€. Biochemistry, 2003, 42, 11373-11381.	2.5	76
275	Formation of13C-,15N-, and18O-Labeled Guanidinohydantoin from Guanosine Oxidation with Singlet Oxygen. Implications for Structure and Mechanism. Journal of the American Chemical Society, 2003, 125, 13926-13927.	13.7	163
276	The Hydantoin Lesions Formed from Oxidation of 7,8-Dihydro-8-oxoguanine Are Potent Sources of Replication Errors in Vivo. Biochemistry, 2003, 42, 9257-9262.	2.5	207
277	Effect of the Oxidized Guanosine Lesions Spiroiminodihydantoin and Guanidinohydantoin on Proofreading byEscherichia coliDNA Polymerase I (Klenow Fragment) in Different Sequence Contextsâ€. Biochemistry, 2003, 42, 13008-13018.	2.5	47
278	Reactivity of Bulged Bases in Duplex DNA with Redox-active Nickel and Cobalt Complexes. Supramolecular Chemistry, 2002, 14, 121-126.	1.2	8
279	In Vitro Nucleotide Misinsertion Opposite the Oxidized Guanosine Lesions Spiroiminodihydantoin and Guanidinohydantoin and DNA Synthesis Past the Lesions UsingEscherichia coliDNA Polymerase I (Klenow Fragment)â€. Biochemistry, 2002, 41, 15304-15314.	2.5	146
280	Structure and potential mutagenicity of new hydantoin products from guanosine and 8-oxo-7,8-dihydroguanine oxidation by transition metals Environmental Health Perspectives, 2002, 110, 713-717.	6.0	70
281	Oxidative DNA damage from sulfite autoxidation catalyzed by manganese(III). Comptes Rendus Chimie, 2002, 5, 461-466.	0.5	21
282	The pH-Dependent Role of Superoxide in Riboflavin-Catalyzed Photooxidation of 8-Oxo-7,8-dihydroguanosine. Organic Letters, 2001, 3, 2801-2804.	4.6	144
283	Characterization of Hydantoin Products from One-Electron Oxidation of 8-Oxo-7,8-dihydroguanosine in a Nucleoside Model. Chemical Research in Toxicology, 2001, 14, 927-938.	3.3	205
284	Repair of hydantoins, one electron oxidation product of 8-oxoguanine, by DNA glycosylases of Escherichia coli. Nucleic Acids Research, 2001, 29, 1967-1974.	14.5	85
285	Guanine versus deoxyribose damage in DNA oxidation mediated by vanadium(IV) and vanadium(V) complexes. Journal of Biological Inorganic Chemistry, 2001, 6, 100-106.	2.6	35
286	Removal of Hydantoin Products of 8-Oxoguanine Oxidation by the Escherichia coli DNA Repair Enzyme, FPG. Biochemistry, 2000, 39, 14984-14992.	2.5	128
287	Characterization of Spiroiminodihydantoin as a Product of One-Electron Oxidation of 8-Oxo-7,8-dihydroguanosine. Organic Letters, 2000, 2, 613-616.	4.6	268
288	Targeting the DNA Cleavage Activity of Copper Phenanthroline and Clip-Phen to A·T Tracts via Linkage to a Poly-N-methylpyrrole. Bioconjugate Chemistry, 2000, 11, 892-900.	3.6	61

#	Article	IF	CITATIONS
289	Formation of trans-3-hydroxy-4-phenylbutyrolactone from trans-styrylacetic acid and aqueous KHSO5. Tetrahedron Letters, 1999, 40, 2069-2070.	1.4	10
290	Mechanistic Information on the Redox Cycling of Nickel(II/III) Complexes in the Presence of Sulfur Oxides and Oxygen. Correlation with DNA Damage Experiments. Inorganic Chemistry, 1999, 38, 3500-3505.	4.0	42
291	Sequence and Stacking Dependence of 8-Oxoguanine Oxidation:Â Comparison of One-Electron vs Singlet Oxygen Mechanisms. Journal of the American Chemical Society, 1999, 121, 9423-9428.	13.7	145
292	The Sal-XH Motif for Metal-Mediated Oxidative DNAâ^'Peptide Cross-Linking. Journal of the American Chemical Society, 1999, 121, 6956-6957.	13.7	33
293	Mechanism-Based DNAâ ^{~'} Protein Cross-Linking of MutY via Oxidation of 8-Oxoguanosine. Journal of the American Chemical Society, 1999, 121, 9901-9902.	13.7	48
294	Hydroxylation, Epoxidation, and DNA Cleavage Reactions Mediated by the Biomimetic Mn-TMPyP/O2/Sulfite Oxidation Systemâ€. Inorganic Chemistry, 1999, 38, 4123-4127.	4.0	47
295	Selective Association between a Macrocyclic Nickel Complex and Extrahelical Guanine Residuesâ€. Biochemistry, 1999, 38, 15034-15042.	2.5	19
296	Nickel and Cobalt Reagents Promote Selective Oxidation of Z-DNAâ€. Biochemistry, 1999, 38, 16648-16654.	2.5	20
297	Oxidative Nucleobase Modifications Leading to Strand Scission. Chemical Reviews, 1998, 98, 1109-1152.	47.7	1,634
298	Nickel Complexes of Cysteine- and Cystine-Containing Peptides:Â Spontaneous Formation of Disulfide-Bridged Dimers at Neutral pH. Inorganic Chemistry, 1998, 37, 5358-5363.	4.0	25
299	A nickel complex cleaves uridine in folded RNA structures: application to E. coli tmRNA and related engineered molecules. Journal of Molecular Biology, 1998, 279, 577-587.	4.2	54
300	Gel electrophoretic detection of 7,8-dihydro-8-oxoguanine and 7, 8- dihydro-8-oxoadenine via oxidation by Ir (IV). Nucleic Acids Research, 1998, 26, 2247-2249.	14.5	65
301	Nickel-Based Probes of Nucleic Acid Structure Bind to Guanine N7 but Do Not Perturb a Dynamic Equilibrium of Extrahelical Guanine Residues. Journal of the American Chemical Society, 1998, 120, 3284-3288.	13.7	43
302	DNA Damage from Sulfite Autoxidation Catalyzed by a Nickel(II) Peptide. Journal of the American Chemical Society, 1997, 119, 1501-1506.	13.7	141
303	Nickel-Dependent Oxidative Cross-Linking of a Protein. Chemical Research in Toxicology, 1997, 10, 302-309.	3.3	42
304	Bromination of pyrimidines using bromide and monoperoxysulfate: A competition study between cytidine, uridine and thymidine. Tetrahedron Letters, 1997, 38, 2805-2808.	1.4	27
305	DNA and RNA Modification Promoted by [Co(H2O)6]Cl2 and KHSO5:  Guanine Selectivity, Temperature Dependence, and Mechanism. Journal of the American Chemical Society, 1996, 118, 2320-2325.	13.7	115
306	Nickel Complexes as Antioxidants. Inhibition of Aldehyde Autoxidation by Nickel(II) Tetraazamacrocycles. Inorganic Chemistry, 1996, 35, 6632-6633.	4.0	49

#	Article	IF	CITATIONS
307	Hydrophobic vs coulombic interactions in the binding of steroidal polyamines to DNA. , 1996, 9, 143-148.		12
308	Metal-mediated oxidation of guanines in DNA and RNA: a comparison of cobalt(II), nickel(II) and copper(II) complexes. Inorganica Chimica Acta, 1996, 251, 193-199.	2.4	46
309	Dioxygen chemistry of nickel(II) dioxopentaazamacrocyclic complexes: Substituent and medium effects. Journal of Molecular Catalysis A, 1996, 113, 379-391.	4.8	17
310	Cytosine-specific chemical probing of DNA using bromide and monoperoxysulfate. Nucleic Acids Research, 1996, 24, 5062-5063.	14.5	50
311	Synthesis and DNA binding properties of C3-, C12-, and C24- substituted amino-steroids derived from bile acids. Bioorganic and Medicinal Chemistry, 1995, 3, 823-838.	3.0	28
312	Design of cholic acid macrocycles as hosts for molecular recognition of monosaccharides. Computational and Theoretical Chemistry, 1995, 334, 193-205.	1.5	9
313	DNA modification promoted by water-soluble nickel(II) salen complexes: A switch to DNA alkylation. Journal of Inorganic Biochemistry, 1994, 54, 199-206.	3.5	56
314	Design of cholic acid hosts for molecular recognition of monosaccharides using systematic conformational searching. Computational and Theoretical Chemistry, 1994, 308, 159-174.	1.5	7
315	Recognition of Guanine Structure in Nucleic Acids by Nickel Complexes. Accounts of Chemical Research, 1994, 27, 295-301.	15.6	193
316	Structural Effects in Novel Steroidal Polyamine-DNA Binding. Journal of the American Chemical Society, 1994, 116, 12077-12078.	13.7	56
317	Nickel(III)-Promoted DNA Cleavage with Ambient Dioxygen. Angewandte Chemie International Edition in English, 1993, 32, 277-278.	4.4	88
318	Mechanistic studies of DNA and RNA oxidation by macrocyclic nickel complexes Journal of Inorganic Biochemistry, 1993, 51, 517.	3.5	0
319	Alkylation of DNA using nickel salen complexes Journal of Inorganic Biochemistry, 1993, 51, 543.	3.5	1
320	Preparation of primary vicinal diamines from amino acid esters and crystal structure of a chiral nickel salen complex. Tetrahedron Letters, 1993, 34, 1905-1908.	1.4	22
321	A primer extension assay for modification of guanine by Ni(ll) complexes. Nucleic Acids Research, 1993, 21, 5524-5525.	14.5	39
322	Conformation-specific detection of guanine in DNA: ends, mismatches, bulges and loops. Journal of the American Chemical Society, 1992, 114, 322-325.	13.7	80
323	Ligand effects associated with the intrinsic selectivity of DNA oxidation promoted by nickel(II) macrocyclic complexes. Journal of the American Chemical Society, 1992, 114, 6407-6411.	13.7	95
324	Alkene aziridination and epoxidation catalyzed by chiral metal salen complexes. Tetrahedron Letters, 1992, 33, 1001-1004.	1.4	143

#	Article	IF	CITATIONS
325	Catalysis of aryl-halogen exchange by nickel(II) complexes using sodium hypochlorite. Journal of Organic Chemistry, 1991, 56, 1344-1346.	3.2	36
326	DNA modification: intrinsic selectivity of nickel(II) complexes. Journal of the American Chemical Society, 1991, 113, 5884-5886.	13.7	83
327	Preparation and structural characterization of dicopper(II) and dinickel(II) imidazolate-bridged macrocyclic Schiff base complexes. Inorganic Chemistry, 1991, 30, 3454-3461.	4.0	82
328	Dinuclear nickel complexes as models for the enzyme urease Journal of Inorganic Biochemistry, 1991, 43, 661.	3.5	2
329	High turnover rates in pH-dependent alkene epoxidation using NaOCl and square-planar nickel(II) catalysts. Journal of the American Chemical Society, 1990, 112, 4568-4570.	13.7	118
330	Optically active difunctionalized dioxocyclam macrocycles: ligands for nickel-catalyzed oxidation of alkenes. Journal of Organic Chemistry, 1989, 54, 1584-1589.	3.2	93
331	(Template)2 synthesis of a dinucleating macrocyclic ligand and crystal structure of its dicopper(II) imidazolate complex. Journal of the American Chemical Society, 1989, 111, 9278-9279.	13.7	45
332	Synthesis of a chiral dioxo-cyclam derived from L-phenylalanine and its application to olefin oxidation chemistry. Tetrahedron Letters, 1988, 29, 5091-5094.	1.4	50
333	Complexation of ATP to a Synthetic [15]-N3 Macrocyclic Polyammonium Receptor. Tetrahedron Letters, 1988, 29, 6231-6234.	1.4	37
334	Alkene Epoxidation Using Ni(II) Complexes of Chiral Cyclams. Tetrahedron Letters, 1988, 29, 877-880.	1.4	66
335	Catalysis of alkene oxidation by nickel salen complexes using sodium hypochlorite under phase-transfer conditions. Journal of the American Chemical Society, 1988, 110, 4087-4089.	13.7	146
336	Mechanistic studies of alkene epoxidation catalyzed by nickel(II) cyclam complexes. Oxygen-18 labeling and substituent effects. Journal of the American Chemical Society, 1988, 110, 6124-6129.	13.7	115
337	Synthesis of all optically active spermine macrocycle, (S)-6-(hydroxymethyl)-1,5,10,14-tetraazacyclooctadecane, and its complexation to ATP. Tetrahedron Letters, 1986, 27, 5943-5946.	1.4	37
338	Synthesis of novel macrobicyclic polyfunctional cryptands. Tetrahedron Letters, 1985, 26, 215-218.	1.4	22
339	Substituent effects on the aliphatic Claisen rearrangements. 2. Theoretical analysis. Journal of the American Chemical Society, 1981, 103, 6984-6986.	13.7	52
340	Substituent effects on the aliphatic Claisen rearrangement. 1. Synthesis and rearrangement of cyano-substituted allyl vinyl ethers. Journal of the American Chemical Society, 1981, 103, 6983-6984.	13.7	107
341	Fluorophoreâ€mediated photooxidation of the guanine heterocycle. Journal of Physical Organic Chemistry, 0, , .	1.9	0
342	Response to "Hydroxyl radical is predominantly involved in oxidatively generated base damage to cellular DNA exposed to ionizing radiation―by Cadet etÂal International Journal of Radiation Biology, 0, , 1-1.	1.8	0