
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10784924/publications.pdf Version: 2024-02-01

Ελρορο Δτλμ

#	Article	IF	CITATIONS
1	Impact of dust addition on the microbial food web under present and future conditions of pH and temperature. Biogeosciences, 2022, 19, 1303-1319.	3.3	5
2	Correcting a major error in assessing organic carbon pollution in natural waters. Science Advances, 2021, 7, .	10.3	37
3	Synthetic algal-bacteria consortia for space-efficient microalgal growth in a simple hydrogel system. Journal of Applied Phycology, 2021, 33, 2805-2815.	2.8	20
4	Ectohydrolytic enzyme activities of bacteria associated with Orbicella annularis coral. Coral Reefs, 2021, 40, 1899.	2.2	0
5	Bacterial Nanotubes as Intercellular Linkages in Marine Assemblages. Frontiers in Marine Science, 2021, 8, .	2.5	4
6	Insight into the resilience and susceptibility of marine bacteria to T6SS attack by Vibrio cholerae and Vibrio coralliilyticus. PLoS ONE, 2020, 15, e0227864.	2.5	26
7	Viral Attachment to Biotic and Abiotic Surfaces in Seawater. Applied and Environmental Microbiology, 2020, 86, .	3.1	15
8	Bionic 3D printed corals. Nature Communications, 2020, 11, 1748.	12.8	78
9	Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17, 569-586.	28.6	1,138
10	Array atomic force microscopy for real-time multiparametric analysis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5872-5877.	7.1	18
11	Detection of Active Microbial Enzymes in Nascent Sea Spray Aerosol: Implications for Atmospheric Chemistry and Climate. Environmental Science and Technology Letters, 2019, 6, 171-177.	8.7	28
12	Unveiling the enigma of refractory carbon in the ocean. National Science Review, 2018, 5, 459-463.	9.5	80
13	Enrichment of Bacterioplankton Able to Utilize One-Carbon and Methylated Compounds in the Coastal Pacific Ocean. Frontiers in Marine Science, 2018, 5, .	2.5	12
14	Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm. Nature Communications, 2018, 9, 2017.	12.8	103
15	Evolving paradigms in biological carbon cycling in the ocean. National Science Review, 2018, 5, 481-499.	9.5	100
16	Bacterioplankton drawdown of coral mass-spawned organic matter. ISME Journal, 2018, 12, 2238-2251.	9.8	8
17	Use of plankton-derived vitamin B1 precursors, especially thiazole-related precursor, by key marine picoeukaryotic phytoplankton. ISME Journal, 2017, 11, 753-765.	9.8	69
18	A Dynamic Link between Ice Nucleating Particles Released in Nascent Sea Spray Aerosol and Oceanic Biological Activity during Two Mesocosm Experiments. Journals of the Atmospheric Sciences, 2017, 74, 151-166.	1.7	93

#	Article	IF	CITATIONS
19	Response of bacterial communities from California coastal waters to alginate particles and an alginolytic <i>Alteromonas macleodii</i> strain. Environmental Microbiology, 2016, 18, 4369-4377.	3.8	40
20	Outer membrane vesicles containing signalling molecules and active hydrolytic enzymes released by a coral pathogen <i>Vibrio shilonii</i> AK1. Environmental Microbiology, 2016, 18, 3850-3866.	3.8	74
21	Enrichment of Saccharides and Divalent Cations in Sea Spray Aerosol During Two Phytoplankton Blooms. Environmental Science & Technology, 2016, 50, 11511-11520.	10.0	90
22	Bacteriaâ€driven production of alkyl nitrates in seawater. Geophysical Research Letters, 2015, 42, 597-604.	4.0	8
23	Advancing Model Systems for Fundamental Laboratory Studies of Sea Spray Aerosol Using the Microbial Loop. Journal of Physical Chemistry A, 2015, 119, 8860-8870.	2.5	62
24	Microbial Control of Sea Spray Aerosol Composition: A Tale of Two Blooms. ACS Central Science, 2015, 1, 124-131.	11.3	172
25	Metabolic characterization of a model heterotrophic bacterium capable of significant chemical alteration of marine dissolved organic matter. Marine Chemistry, 2015, 177, 357-365.	2.3	18
26	Broad distribution and high proportion of protein synthesis active marine bacteria revealed by click chemistry at the single cell level. Frontiers in Marine Science, 2014, 1, .	2.5	30
27	Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7202-7207.	7.1	207
28	Transition Metal Associations with Primary Biological Particles in Sea Spray Aerosol Generated in a Wave Channel. Environmental Science & Technology, 2014, 48, 1324-1333.	10.0	58
29	Impact of marine biogeochemistry on the chemical mixing state and cloud forming ability of nascent sea spray aerosol. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8553-8565.	3.3	84
30	Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7550-7555.	7.1	439
31	Corals shed bacteria as a potential mechanism of resilience to organic matter enrichment. ISME Journal, 2012, 6, 1159-1165.	9.8	49
32	Microbial distribution and activity across a water mass frontal zone in the California Current Ecosystem. Journal of Plankton Research, 2012, 34, 802-814.	1.8	35
33	Capsomer Dynamics and Stabilization in the TÂ= 12 Marine Bacteriophage SIO-2 and Its Procapsid Studied by CryoEM. Structure, 2012, 20, 498-503.	3.3	26
34	New directions in coral reef microbial ecology. Environmental Microbiology, 2012, 14, 833-844.	3.8	73
35	The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool. Nature Reviews Microbiology, 2011, 9, 555-555.	28.6	73
36	Quantitative role of shrimp fecal bacteria in organic matter fluxes in a recirculating shrimp aquaculture system. FEMS Microbiology Ecology, 2011, 77, 134-145.	2.7	36

#	Article	IF	CITATIONS
37	Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria. Limnology and Oceanography, 2010, 55, 2317-2330.	3.1	17
38	Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces. FEMS Microbiology Ecology, 2010, 73, no-no.	2.7	113
39	High-resolution imaging of pelagic bacteria by Atomic Force Microscopy and implications for carbon cycling. ISME Journal, 2010, 4, 427-439.	9.8	36
40	Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Reviews Microbiology, 2010, 8, 593-599.	28.6	1,278
41	New Method for Counting Bacteria Associated with Coral Mucus. Applied and Environmental Microbiology, 2010, 76, 6128-6133.	3.1	58
42	Antagonistic interactions among coralâ€associated bacteria. Environmental Microbiology, 2010, 12, 28-39.	3.8	218
43	Major Role of Microbes in Carbon Fluxes during Austral Winter in the Southern Drake Passage. PLoS ONE, 2009, 4, e6941.	2.5	60
44	Resilience of Coral-Associated Bacterial Communities Exposed to Fish Farm Effluent. PLoS ONE, 2009, 4, e7319.	2.5	109
45	BACTERIAâ€INDUCED MOTILITY REDUCTION IN <i>LINGULODINIUM POLYEDRUM</i> (DINOPHYCEAE) ¹ . Journal of Phycology, 2008, 44, 923-928.	2.3	27
46	Gradients of coastal fish farm effluents and their effect on coral reef microbes. Environmental Microbiology, 2008, 10, 2299-2312.	3.8	55
47	Cultivation and Ecosystem Role of a Marine <i>Roseobacter</i> Clade-Affiliated Cluster Bacterium. Applied and Environmental Microbiology, 2008, 74, 2595-2603.	3.1	92
48	Microbial Ecology of Four Coral Atolls in the Northern Line Islands. PLoS ONE, 2008, 3, e1584.	2.5	383
49	Vibrio cholerae Strains Possess Multiple Strategies for Abiotic and Biotic Surface Colonization. Journal of Bacteriology, 2007, 189, 5348-5360.	2.2	81
50	Actively Growing Bacteria in the Inland Sea of Japan, Identified by Combined Bromodeoxyuridine Immunocapture and Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 2007, 73, 2787-2798.	3.1	50
51	Microbial biomass and viral infections of heterotrophic prokaryotes in the sub-surface layer of the central Arctic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1744-1757.	1.4	40
52	The Microbial Loop. Oceanography, 2007, 20, 28-33.	1.0	321
53	Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 2007, 5, 782-791.	28.6	1,339
54	Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environmental Microbiology, 2007, 9, 1233-1252.	3.8	181

#	Article	IF	CITATIONS
55	Trophic regulation of Vibrio cholerae in coastal marine waters. Environmental Microbiology, 2006, 8, 21-29.	3.8	98
56	Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in Southern California. FEMS Microbiology Letters, 2006, 261, 141-149.	1.8	52
57	A Glimpse into the Expanded Genome Content of Vibrio cholerae through Identification of Genes Present in Environmental Strains. Journal of Bacteriology, 2005, 187, 2992-3001.	2.2	54
58	Antagonistic Interactions among Marine Bacteria Impede the Proliferation of Vibrio cholerae. Applied and Environmental Microbiology, 2005, 71, 8531-8536.	3.1	78
59	OCEANOGRAPHY: Microbes, Molecules, and Marine Ecosystems. Science, 2004, 303, 1622-1624.	12.6	154
60	Algicidal Bacteria in the Sea and their Impact on Algal Blooms1. Journal of Eukaryotic Microbiology, 2004, 51, 139-144.	1.7	450
61	The oceanic gel phase: a bridge in the DOM–POM continuum. Marine Chemistry, 2004, 92, 67-85.	2.3	576
62	Growth of Vibrio cholerae O1 in Red Tide Waters off California. Applied and Environmental Microbiology, 2003, 69, 6923-6931.	3.1	89
63	2- n -Pentyl-4-Quinolinol Produced by a Marine Alteromonas sp. and Its Potential Ecological and Biogeochemical Roles. Applied and Environmental Microbiology, 2003, 69, 568-576.	3.1	95
64	The balance between silica production and silica dissolution in the sea: Insights from Monterey Bay, California, applied to the global data set. Limnology and Oceanography, 2003, 48, 1846-1854.	3.1	92
65	Diminished efficiency in the oceanic silica pump caused by bacteriaâ€mediated silica dissolution. Limnology and Oceanography, 2003, 48, 1855-1868.	3.1	78
66	Regulation of Oceanic Silicon and Carbon Preservation by Temperature Control on Bacteria. Science, 2002, 298, 1980-1984.	12.6	112
67	Genomic analysis of uncultured marine viral communities. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14250-14255.	7.1	874
68	Widespread <i>N</i> -Acetyl- <scp>d</scp> -Glucosamine Uptake among Pelagic Marine Bacteria and Its Ecological Implications. Applied and Environmental Microbiology, 2002, 68, 5554-5562.	3.1	137
69	Thin laser light sheet microscope for microbial oceanography. Optics Express, 2002, 10, 145.	3.4	167
70	Introduction, history, and overview: The â€~methods' to our madness. Methods in Microbiology, 2001, 30, 1-12.	0.8	7
71	Sea snow microcosms. Nature, 2001, 414, 495-498.	27.8	329
72	Bacterial control of silicon regeneration from diatom detritus: Significance of bacterial ectohydrolases and species identity. Limnology and Oceanography, 2001, 46, 1606-1623.	3.1	163

#	Article	IF	CITATIONS
73	Antagonistic Interactions among Marine Pelagic Bacteria. Applied and Environmental Microbiology, 2001, 67, 4975-4983.	3.1	348
74	Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments. Limnology and Oceanography, 2000, 45, 1697-1706.	3.1	153
75	Constraining bacterial production, conversion efficiency and respiration in the Ross Sea, Antarctica, January–February, 1997. Deep-Sea Research Part II: Topical Studies in Oceanography, 2000, 47, 3227-3247.	1.4	76
76	Microbial food web structure in the Arabian Sea: a US JGOFS study. Deep-Sea Research Part II: Topical Studies in Oceanography, 2000, 47, 1387-1422.	1.4	198
77	Dynamics of Bacterial Community Composition and Activity during a Mesocosm Diatom Bloom. Applied and Environmental Microbiology, 2000, 66, 578-587.	3.1	592
78	Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature, 1999, 397, 508-512.	27.8	476
79	Bacterial community composition during two consecutive NE Monsoon periods in the Arabian Sea studied by denaturing gradient gel electrophoresis (DGCE) of rRNA genes. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46, 1791-1811.	1.4	105
80	Nanoscale patchiness of bacteria in lake water studied with the spatial information preservation method. Limnology and Oceanography, 1998, 43, 307-314.	3.1	28
81	Spatially explicit simulations of a microbial food web. Limnology and Oceanography, 1997, 42, 613-622.	3.1	55
82	Bacterial mediation of carbon fluxes during a diatom bloom in a mesocosm. Deep-Sea Research Part II: Topical Studies in Oceanography, 1995, 42, 75-97.	1.4	235
83	Bacteria in Oceanic Carbon Cycling as a Molecular Problem. , 1995, , 39-54.		12
84	Significance of bacteria in carbon fluxes in the Arabian Sea. Journal of Earth System Science, 1994, 103, 341-351.	1.3	24
85	Blooms of sequence-specific culturable bacteria in the sea. FEMS Microbiology Letters, 1993, 102, 161-166.	1.8	126
86	Bacterial transformation and transport of organic matter in the Southern California Bight. Progress in Oceanography, 1992, 30, 151-166.	3.2	23
87	Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature, 1992, 359, 139-142.	27.8	889
88	The role of the microbial loop in Antarctic pelagic ecosystems. Polar Research, 1991, 10, 239-244.	1.6	31
89	Bacterial 5'-nucleotidase activity in estuarine and coastal marine waters: Characterization of enzyme activity. Limnology and Oceanography, 1991, 36, 1427-1436.	3.1	54
90	The role of the microbial loop in Antarctic pelagic ecosystems. Polar Research, 1991, 10, 239-244.	1.6	51

#	Article	IF	CITATIONS
91	Elemental cycling and fluxes off southern California. Eos, 1989, 70, 146.	0.1	32
92	Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature, 1988, 332, 441-443.	27.8	724
93	Measurement of Bacterioplankton Growth in the Sea and Its Regulation by Environmental Conditions. , 1984, , 179-196.		39
94	Cycling of Organic Matter by Bacterioplankton in Pelagic Marine Ecosystems: Microenvironmental Considerations. , 1984, , 345-360.		97
95	Bacterial secondary production in freshwater measured by3H-thymidine incorporation method. Microbial Ecology, 1982, 8, 101-113.	2.8	107
96	Uptake of Cyclic AMP by Natural Populations of Marine Bacteria. Applied and Environmental Microbiology, 1982, 43, 869-876.	3.1	36
97	Bacterioplankton Secondary Production Estimates for Coastal Waters of British Columbia, Antarctica, and California. Applied and Environmental Microbiology, 1980, 39, 1085-1095.	3.1	804
98	Occurrence and Characterization of a Phosphoenolpyruvate: Glucose Phosphotransferase System in a Marine Bacterium, <i>Serratia marinorubra</i> . Applied and Environmental Microbiology, 1979, 38, 1086-1091.	3.1	16
99	Role of silicon in diatom metabolism. Archives of Microbiology, 1974, 101, 1-8.	2.2	47
100	Silicic-acid uptake in diatoms studied with [68Ge]germanic acid as tracer. Planta, 1974, 121, 205-212.	3.2	76
101	Role of silicon in diatom metabolism. Archives of Microbiology, 1974, 97, 103-114.	2.2	110
102	Role of Silicon in Diatom Metabolism. IV. Subcellular Localization of Silicon and Germanium in Nitzschia alba and Cylindrotheca fusiformis. Physiologia Plantarum, 1974, 30, 265-272.	5.2	56
103	Germanium incorporation into the silica of diatom cell walls. Archives of Microbiology, 1973, 92, 11-20.	2.2	80