Agnes Simonyi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10782882/publications.pdf

Version: 2024-02-01

71102 71685 6,364 76 41 76 citations h-index g-index papers 76 76 76 8519 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Research, 2002, 958, 439-447.	2.2	465
2	Phospholipase A2 in the central nervous system. Journal of Lipid Research, 2004, 45, 205-213.	4.2	348
3	Kainic Acid-Mediated Excitotoxicity as a Model for Neurodegeneration. Molecular Neurobiology, 2005, 31, 003-016.	4.0	306
4	The "French paradox―and beyond: neuroprotective effects of polyphenols1,2 1Guest editor: Arthur Cederbaum 2This article is part of a series of reviews on "Alcohol, Oxidative Stress and Cell Injury.― The full list of papers may be found on the homepage of the journal Free Radical Biology and Medicine, 2002, 32, 314-318.	2.9	295
5	Resveratrol as a Therapeutic Agent for Neurodegenerative Diseases. Molecular Neurobiology, 2010, 41, 375-383.	4.0	283
6	Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A ₂ in cortical neurons. Journal of Neurochemistry, 2008, 106, 45-55.	3.9	249
7	Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. Journal of Neuroscience Research, 2005, 82, 138-148.	2.9	218
8	Apocynin protects against global cerebral ischemia–reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Research, 2006, 1090, 182-189.	2.2	216
9	Cyclooxygenase-2 inhibition improves amyloid- \hat{l}^2 -mediated suppression of memory and synaptic plasticity. Brain, 2008, 131, 651-664.	7.6	208
10	Botanical Phenolics and Brain Health. NeuroMolecular Medicine, 2008, 10, 259-274.	3.4	189
11	Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 136, 3-13.	2.2	172
12	Phospholipases A2 and Inflammatory Responses in the Central Nervous System. NeuroMolecular Medicine, 2010, 12, 133-148.	3.4	169
13	Polyphenols in Cerebral Ischemia: Novel Targets for Neuroprotection. Molecular Neurobiology, 2005, 31, 135-148.	4.0	140
14	Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA2-IIA expression in astrocytes and microglia. Journal of Neuroinflammation, 2011, 8, 121.	7.2	136
15	Secretory PLA2-IIA: a new inflammatory factor for Alzheimer's disease. Journal of Neuroinflammation, 2006, 3, 28.	7.2	128
16	Quercetin Attenuates Inflammatory Responses in BV-2 Microglial Cells: Role of MAPKs on the Nrf2 Pathway and Induction of Heme Oxygenase-1. PLoS ONE, 2015, 10, e0141509.	2.5	128
17	Role of PKC and MAPK in cytosolic PLA ₂ phosphorylation and arachadonic acid release in	3.9	115
1	primary murine astrocytes. Journal of Neurochemistry, 2002, 83, 259-270.	3.9	113

#	Article	IF	CITATIONS
19	Resveratrol Protects Against Neurotoxicity Induced by Kainic Acid. Neurochemical Research, 2004, 29, 2105-2112.	3.3	113
20	The role of metabotropic glutamate receptor 5 in learning and memory processes. Drug News and Perspectives, 2005, 18, 353.	1.5	111
21	Phospholipase A ₂ in Astrocytes: Responses to Oxidative Stress, Inflammation, and G Protein-Coupled Receptor Agonists. Molecular Neurobiology, 2005, 31, 027-042.	4.0	101
22	Selective Inhibition of Matrix Metalloproteinase-9 Attenuates Secondary Damage Resulting from Severe Traumatic Brain Injury. PLoS ONE, 2013, 8, e76904.	2.5	95
23	Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: Role of NADPH oxidase-derived ROS. Free Radical Biology and Medicine, 2007, 43, 1048-1060.	2.9	94
24	Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. Journal of Neurochemistry, 2004, 90, 637-645.	3.9	91
25	TNFÎ \pm alters occludin and cerebral endothelial permeability: Role of p38MAPK. PLoS ONE, 2017, 12, e0170346.	2.5	88
26	Prolonged Exposure of Cortical Neurons to Oligomeric Amyloid- \hat{l}^2 Impairs NMDA Receptor Function Via NADPH Oxidase-Mediated ROS Production: Protective Effect of Green Tea (-)-Epigallocatechin-3-Gallate. ASN Neuro, 2010, 3, AN20100025.	2.7	81
27	Phospholipases A ₂ and neural membrane dynamics: implications for Alzheimer's disease. Journal of Neurochemistry, 2011, 116, 813-819.	3.9	81
28	Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. Journal of Neuroinflammation, 2015, 12, 199.	7.2	79
29	Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. Journal of Neuroinflammation, 2013, 10, 15.	7.2	73
30	Role of Cytosolic Phospholipase A2 in Oxidative and Inflammatory Signaling Pathways in Different Cell Types in the Central Nervous System. Molecular Neurobiology, 2014, 50, 6-14.	4.0	71
31	P2X7 nucleotide receptors mediate caspase-8/9/3-dependent apoptosis in rat primary cortical neurons. Purinergic Signalling, 2005, 1, 337-347.	2.2	62
32	Interleukinâ€Îβ enhances nucleotideâ€induced and αâ€secretaseâ€dependent amyloid precursor protein processing in rat primary cortical neurons via upâ€regulation of the P2Y ₂ receptor. Journal of Neurochemistry, 2009, 109, 1300-1310.	3.9	61
33	Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells. NeuroMolecular Medicine, 2016, 18, 241-252.	3.4	61
34	Bioavailability of apocynin through its conversion to glycoconjugate but not to diapocynin. Phytomedicine, 2008, 15, 496-503.	5.3	60
35	Grape polyphenols protect neurodegenerative changes induced by chronic ethanol administration. NeuroReport, 1999, 10, 93-96.	1.2	53
36	Metabotropic glutamate receptor subtype 5 antagonism in learning and memory. European Journal of Pharmacology, 2010, 639, 17-25.	3.5	53

#	Article	IF	CITATIONS
37	The neuroprotective effects of apocynin. Frontiers in Bioscience - Elite, 2012, E4, 2183-2193.	1.8	50
38	Expression of groups I and II metabotropic glutamate receptors in the rat brain during aging. Brain Research, 2005, 1043, 95-106.	2.2	49
39	Linking blast physics to biological outcomes in mild traumatic brain injury: Narrative review and preliminary report of an open-field blast model. Behavioural Brain Research, 2018, 340, 147-158.	2.2	47
40	MGlu5 antagonism impairs exploration and memory of spatial and non-spatial stimuli in rats. Behavioural Brain Research, 2008, 191, 235-245.	2.2	44
41	Region-specific decline in the expression of metabotropic glutamate receptor 7 mRNA in rat brain during aging. Molecular Brain Research, 2000, 82, 101-106.	2.3	43
42	Chronic Ethanol Treatment Reduces the Responsiveness of the Hypothalamic-Pituitary-Thyroid Axis to Central Stimulation. Alcoholism: Clinical and Experimental Research, 1996, 20, 954-960.	2.4	42
43	Involvement of oxidative pathways in cytokine-induced secretory phospholipase A2-IIA in astrocytes. Neurochemistry International, 2009, 55, 362-368.	3.8	41
44	Integrating Cytosolic Phospholipase A2 with Oxidative/Nitrosative Signaling Pathways in Neurons: A Novel Therapeutic Strategy for AD. Molecular Neurobiology, 2012, 46, 85-95.	4.0	40
45	Chronic Ethanol-Induced Subtype- and Subregion-Specific Decrease in the mRNA Expression of Metabotropic Glutamate Receptors in Rat Hippocampus. Alcoholism: Clinical and Experimental Research, 2004, 28, 1419-1423.	2.4	38
46	Targeting NADPH Oxidase and Phospholipases A2 in Alzheimer's Disease. Molecular Neurobiology, 2010, 41, 73-86.	4.0	38
47	Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sciences, 2015, 128, 30-38.	4.3	36
48	Ultrastructural brain abnormalities and associated behavioral changes in mice after low-intensity blast exposure. Behavioural Brain Research, 2018, 347, 148-157.	2.2	36
49	Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes. Neurochemistry International, 2016, 97, 49-56.	3.8	35
50	Chronic ethanol on mRNA levels of IP3R1, IP3 3-kinase and mGluR1 in mouse Purkinje neurons. NeuroReport, 1996, 7, 2115-2118.	1.2	34
51	Dietary grape supplement ameliorates cerebral ischemia-induced neuronal death in gerbils. Molecular Nutrition and Food Research, 2005, 49, 443-451.	3.3	32
52	Grape Polyphenols Inhibit Chronic Ethanol-Induced COX-2 mRNA Expression in Rat Brain. Alcoholism: Clinical and Experimental Research, 2002, 26, 352-357.	2.4	31
53	MPEP, a selective metabotropic glutamate receptor 5 antagonist, attenuates conditioned taste aversion in rats. Behavioural Brain Research, 2003, 141, 177-182.	2.2	31
54	The neuroprotective effects of apocynin. Frontiers in Bioscience - Elite, 2012, E4, 2183.	1.8	31

#	Article	IF	CITATIONS
55	Dietary Supplementation of Grape Polyphenols to Rats Ameliorates Chronic Ethanol-Induced Changes in Hepatic Morphology without Altering Changes in Hepatic Lipids. Journal of Nutrition, 1999, 129, 1814-1819.	2.9	29
56	Chronic Ethanol and Iron Administration on Iron Content, Neuronal Nitric Oxide Synthase, and Superoxide Dismutase in Rat Cerebellum. Alcoholism: Clinical and Experimental Research, 1999, 23, 702-707.	2.4	29
57	mGluR7 Genetics and Alcohol: Intersection Yields Clues for Addiction. Neurochemical Research, 2011, 36, 1087-1100.	3 . 3	29
58	Oral administration of grape polyphenol extract ameliorates cerebral ischemia/reperfusion-induced neuronal damage and behavioral deficits in gerbils: comparison of pre- and post-ischemic administrationa~†. Journal of Nutritional Biochemistry, 2009, 20, 369-377.	4.2	28
59	Dietary Sutherlandia and Elderberry Mitigate Cerebral Ischemia-Induced Neuronal Damage and Attenuate p47phox and Phospho-ERK1/2 Expression in Microglial Cells. ASN Neuro, 2014, 6, 175909141455494.	2.7	24
60	Sutherlandia frutescens Ethanol Extracts Inhibit Oxidative Stress and Inflammatory Responses in Neurons and Microglial Cells. PLoS ONE, 2014, 9, e89748.	2.5	23
61	Neuroprotective effects of a nanocrystal formulation of sPLA2 inhibitor PX-18 in cerebral ischemia/reperfusion in gerbils. Brain Research, 2009, 1285, 188-195.	2.2	22
62	From Analysis of Ischemic Mouse Brain Proteome to Identification of Human Serum Clusterin as a Potential Biomarker for Severity of Acute Ischemic Stroke. Translational Stroke Research, 2019, 10, 546-556.	4.2	20
63	Effects of metabotropic glutamate receptor 5 on latent inhibition in conditioned taste aversion. Behavioural Brain Research, 2005, 157, 71-78.	2.2	19
64	Repeated resveratrol treatment attenuates methamphetamine-induced hyperactivity and [3H]dopamine overflow in rodents. Neuroscience Letters, 2013, 554, 53-58.	2.1	17
65	Subchronic apocynin treatment attenuates methamphetamine-induced dopamine release and hyperactivity in rats. Life Sciences, 2014, 98, 6-11.	4.3	15
66	Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2. NeuroMolecular Medicine, 2016, 18, 415-425.	3.4	15
67	Effects of acute ethanol administration and cold exposure on the hypothalamic-pituitary-thyroid axis. Endocrine, 1995, 3, 39-47.	2.2	14
68	Changes in IP3R1 and SERCA2b mRNA levels in the gerbil brain after chronic ethanol administration and transient cerebral ischemia-reperfusion. Molecular Brain Research, 1998, 56, 22-28.	2.3	14
69	Effects of ischemic tolerance on mRNA levels of IP3R1, beta-actin, and neuron-specific enolase in hippocampal CA1 area of the gerbil brain. Neurochemical Research, 1998, 23, 539-542.	3.3	13
70	Ischemia-induced increase in RGS7 mRNA expression in gerbil hippocampus. Neuroscience Letters, 2006, 403, 157-161.	2.1	12
71	Changes in mRNA levels for group I metabotropic glutamate receptors following in utero hypoxia–ischemia. Developmental Brain Research, 1999, 112, 31-37.	1.7	9
72	Extracellular signal-regulated kinase 2 mRNA expression in the rat brain during aging. Neurochemical Research, 2003, 28, 1375-1378.	3.3	9

AGNES SIMONYI

#	Article	IF	CITATIONS
73	Grape polyphenols inhibit chronic ethanol-induced COX-2 mRNA expression in rat brain. Alcoholism: Clinical and Experimental Research, 2002, 26, 352-7.	2.4	8
74	Anaemia worsens early functional outcome after traumatic brain injury: a preliminary study. Brain Injury, 2018, 32, 342-349.	1.2	4
75	Chronic Ethanol and Iron Administration on Iron Content, Neuronal Nitric Oxide Synthase, and Superoxide Dismutase in Rat Cerebellum. Alcoholism: Clinical and Experimental Research, 1999, 23, 702.	2.4	4
76	Botanical Phenolics and Neurodegeneration. Oxidative Stress and Disease, 2011, , 315-332.	0.3	2