Naoki Nitta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10780518/publications.pdf

Version: 2024-02-01

18	7,160	15	17
papers	citations	h-index	g-index
18	18	18	10333
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Li-ion battery materials: present and future. Materials Today, 2015, 18, 252-264.	14.2	5,353
2	Highâ€Capacity Anode Materials for Lithiumâ€Ion Batteries: Choice of Elements and Structures for Active Particles. Particle and Particle Systems Characterization, 2014, 31, 317-336.	2.3	583
3	Lithium lodide as a Promising Electrolyte Additive for Lithium–Sulfur Batteries: Mechanisms of Performance Enhancement. Advanced Materials, 2015, 27, 101-108.	21.0	304
4	In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSIâ€Based Organic Electrolytes. Advanced Energy Materials, 2015, 5, 1401792.	19.5	189
5	A Hierarchical Particle–Shell Architecture for Longâ€Term Cycle Stability of Li ₂ S Cathodes. Advanced Materials, 2015, 27, 5579-5586.	21.0	111
6	Lithographically Patterned Thin Activated Carbon Films as a New Technology Platform for On-Chip Devices. ACS Nano, 2013, 7, 6498-6506.	14.6	90
7	<i>In Situ</i> Small Angle Neutron Scattering Revealing Ion Sorption in Microporous Carbon Electrical Double Layer Capacitors. ACS Nano, 2014, 8, 2495-2503.	14.6	89
8	Carbon Nanotube–CoF ₂ Multifunctional Cathode for Lithium Ion Batteries: Effect of Electrolyte on Cycle Stability. Small, 2015, 11, 5164-5173.	10.0	80
9	Degradation and stabilization of lithium cobalt oxide in aqueous electrolytes. Energy and Environmental Science, 2016, 9, 1841-1848.	30.8	80
10	Comparative study of the solid electrolyte interphase on graphite in full Li-ion battery cells using X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and electron microscopy. Carbon, 2013, 52, 388-397.	10.3	75
11	Lithium–Iron Fluoride Battery with In Situ Surface Protection. Advanced Functional Materials, 2016, 26, 1507-1516.	14.9	73
12	Influence of Binders, Carbons, and Solvents on the Stability of Phosphorus Anodes for Li-ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25991-26001.	8.0	41
13	Enhancing Cycle Stability of Lithium Iron Phosphate in Aqueous Electrolytes by Increasing Electrolyte Molarity. Advanced Energy Materials, 2016, 6, 1501805.	19.5	37
14	Stabilization of selenium cathodes via in situ formation of protective solid electrolyte layer. Journal of Materials Chemistry A, 2014, 2, 18898-18905.	10.3	32
15	Toward a Long-Chain Perfluoroalkyl Replacement: Water and Oil Repellency of Polyethylene Terephthalate (PET) Films Modified with Perfluoropolyether-Based Polyesters. ACS Applied Materials & Interfaces, 2017, 9, 24318-24330.	8.0	19
16	Nanostructured composites for high energy batteries and supercapacitors. , 2015, , .		2
17	Lithium Sulfide Cathodes: A Hierarchical Particle-Shell Architecture for Long-Term Cycle Stability of Li2 S Cathodes (Adv. Mater. 37/2015). Advanced Materials, 2015, 27, 5578-5578.	21.0	1

Conversion Cathodes: Lithium–Iron Fluoride Battery with In Situ Surface Protection (Adv. Funct.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50