
Cesar Pulgarin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10780063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting the bactericidal efficacy of solar disinfection (SODIS): from kinetic modeling of in vitro tests towards the in silico forecast of E. coli inactivation. Chemical Engineering Journal, 2022, 427, 130866.	12.7	7
2	Decrypting the photocatalytic bacterial inactivation of hierarchical flower-like Bi2WO6 microspheres induced by surface properties: Experimental studies and ab initio calculations. Chemical Engineering Journal, 2022, 427, 131768.	12.7	23
3	Mechanistic modelling of solar disinfection (SODIS) kinetics of Escherichia coli, enhanced with H2O2 – Part 2: Shine on you, crazy peroxide. Chemical Engineering Journal, 2022, 439, 135783.	12.7	2
4	Mechanistic modelling of solar disinfection (SODIS) kinetics of Escherichia coli, enhanced with H2O2 – part 1: The dark side of peroxide. Chemical Engineering Journal, 2022, 439, 135709.	12.7	3
5	Identifying the mediators of intracellular E. coli inactivation under UVA light: The (photo) Fenton process and singlet oxygen. Water Research, 2022, 221, 118740.	11.3	17
6	An innovative, highly stable Ag/ZIF-67@GO nanocomposite with exceptional peroxymonosulfate (PMS) activation efficacy, for the destruction of chemical and microbiological contaminants under visible light. Journal of Hazardous Materials, 2021, 413, 125308.	12.4	98
7	Irreversible inactivation of carbapenem-resistant Klebsiella pneumoniae and its genes in water by photo-electro-oxidation and photo-electro-Fenton - Processes action modes. Science of the Total Environment, 2021, 792, 148360.	8.0	10
8	Unfolding the action mode of light and homogeneous vs. heterogeneous photo-Fenton in bacteria disinfection and concurrent elimination of micropollutants in urban wastewater, mediated by iron oxides in Raceway Pond Reactors. Applied Catalysis B: Environmental, 2020, 263, 118158.	20.2	28
9	A novel proposition for a citrate-modified photo-Fenton process against bacterial contamination of microalgae cultures. Applied Catalysis B: Environmental, 2020, 265, 118615.	20.2	19
10	Enhancing solar disinfection (SODIS) with the photo-Fenton or the Fe2+/peroxymonosulfate-activation process in large-scale plastic bottles leads to toxicologically safe drinking water. Water Research, 2020, 186, 116387.	11.3	36
11	Employing bacterial mutations for the elucidation of photo-Fenton disinfection: Focus on the intracellular and extracellular inactivation mechanisms induced by UVA and H2O2. Water Research, 2020, 182, 116049.	11.3	45
12	Detrimental vs. beneficial influence of ions during solar (SODIS) and photo-Fenton disinfection of E. coli in water: (Bi)carbonate, chloride, nitrate and nitrite effects. Applied Catalysis B: Environmental, 2020, 270, 118877.	20.2	64
13	Natural iron ligands promote a metal-based oxidation mechanism for the Fenton reaction in water environments. Journal of Hazardous Materials, 2020, 393, 122413.	12.4	53
14	Visible light plays a significant role during bacterial inactivation by the photo-fenton process, even at sub-critical light intensities. Water Research, 2020, 174, 115636.	11.3	44
15	Improving visible light photocatalytic inactivation of E. coli by inducing highly efficient radical pathways through peroxymonosulfate activation using 3-D, surface-enhanced, reduced graphene oxide (rGO) aerogels. Chemical Engineering Journal, 2020, 396, 125189.	12.7	47
16	Insights into the Photocatalytic Bacterial Inactivation by Flower-Like Bi2WO6 under Solar or Visible Light, Through in Situ Monitoring and Determination of Reactive Oxygen Species (ROS). Water (Switzerland), 2020, 12, 1099.	2.7	26
17	Kinetic modeling of lag times during photo-induced inactivation of E.Âcoli in sunlit surface waters: Unraveling the pathways of exogenous action. Water Research, 2019, 163, 114894.	11.3	26
18	Flower-like magnetized photocatalysts accelerating an emerging pollutant removal under indoor visible light and related phenomena. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 378, 105-113.	3.9	23

#	Article	IF	CITATIONS
19	Evidence for a dual mechanism in the TiO2/CuxO photocatalyst during the degradation of sulfamethazine under solar or visible light: Critical issues. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 270-279.	3.9	48
20	Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5- vs. S2O82- in drinking water. Applied Catalysis B: Environmental, 2019, 248, 62-72.	20.2	100
21	E. coli – MS2 bacteriophage interactions during solar disinfection of wastewater and the subsequent post-irradiation period. Chemical Engineering Journal, 2019, 359, 1224-1233.	12.7	11
22	Enhancing solar disinfection of water in PET bottles by optimized in-situ formation of iron oxide films. From heterogeneous to homogeneous action modes with H2O2 vs. O2 – Part 2: Direct use of (natural) iron oxides. Chemical Engineering Journal, 2019, 360, 1051-1062.	12.7	6
23	Iron-coated polymer films with high antibacterial activity under indoor and outdoor light, prepared by different facile pre-treatment and deposition methods. Applied Catalysis B: Environmental, 2019, 243, 161-174.	20.2	0
24	A systematic investigation on the bactericidal transient species generated by photo-sensitization of natural organic matter (NOM) during solar and photo-Fenton disinfection of surface waters. Applied Catalysis B: Environmental, 2019, 244, 983-995.	20.2	45
25	Enhancing solar disinfection of water in PET bottles by optimized in-situ formation of iron oxide films. From heterogeneous to homogeneous action modes with H2O2 vs. O2 – Part 1: Iron salts as oxide precursors. Chemical Engineering Journal, 2019, 358, 211-224.	12.7	17
26	Duality in the Mechanism of Hexagonal ZnO/CuxO Nanowires Inducing Sulfamethazine Degradation under Solar or Visible Light. Catalysts, 2019, 9, 916.	3.5	37
27	Wastewater and urine treatment by UVC-based advanced oxidation processes: Implications from the interactions of bacteria, viruses, and chemical contaminants. Chemical Engineering Journal, 2018, 343, 270-282.	12.7	36
28	Bacterial disinfection by the photo-Fenton process: Extracellular oxidation or intracellular photo-catalysis?. Applied Catalysis B: Environmental, 2018, 227, 285-295.	20.2	75
29	Fe and Cu in humic acid extracts modify bacterial inactivation pathways during solar disinfection and photo-Fenton processes in water. Applied Catalysis B: Environmental, 2018, 235, 75-83.	20.2	41
30	Effect of μM Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water. Water Research, 2018, 140, 220-231.	11.3	79
31	Solar light and the photo-Fenton process against antibiotic resistant bacteria in wastewater: A kinetic study with a Streptomycin-resistant strain. Catalysis Today, 2018, 313, 86-93.	4.4	41
32	Photoinduced disinfection in sunlit natural waters: Measurement of the second order inactivation rate constants between E.Âcoli and photogenerated transient species. Water Research, 2018, 147, 242-253.	11.3	29
33	Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment. Water Research, 2018, 143, 334-345.	11.3	133
34	Beneficial effect of Cu on Ti-Nb-Ta-Zr sputtered uniform/adhesive gum films accelerating bacterial inactivation under indoor visible light. Colloids and Surfaces B: Biointerfaces, 2017, 152, 152-158.	5.0	14
35	Modeling and treatment optimization of pharmaceutically active compounds by the photo-Fenton process: The case of the antidepressant Venlafaxine. Journal of Environmental Chemical Engineering, 2017, 5, 818-828.	6.7	18
36	Insight into the catalyst/photocatalyst microstructure presenting the same composition but leading to a variance in bacterial reduction under indoor visible light. Applied Catalysis B: Environmental, 2017, 208, 135-147.	20.2	22

#	Article	IF	CITATIONS
37	New evidence for disinfection, self-cleaning and pollutant degradation mediated by GF-TiO 2 -Cu mats under solar/visible light in mild oxidative conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 351-363.	3.9	7
38	Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids. Applied Catalysis B: Environmental, 2017, 205, 219-227.	20.2	54
39	Cu-decorated Raschig-TiO 2 rings inducing MB repetitive discoloration without release of Cu-ions under solar light. Journal of Environmental Chemical Engineering, 2017, 5, 310-318.	6.7	6
40	Selecting the best AOP for isoxazolyl penicillins degradation as a function of water characteristics: Effects of pH, chemical nature of additives and pollutant concentration. Journal of Environmental Management, 2017, 190, 72-79.	7.8	36
41	Fungicidal activity of copper-sputtered flexible surfaces under dark and actinic light against azole-resistant Candida albicans and Candida glabrata. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 229-234.	3.8	22
42	Effect of light and oxygen on repetitive bacterial inactivation on uniform, adhesive, robust and stable Cu-polyester surfaces. Journal of Advanced Oxidation Technologies, 2017, 20, .	0.5	6
43	Synchronic coupling of Cu2O(p)/CuO(n) semiconductors leading to Norfloxacin degradation under visible light: Kinetics, mechanism and film surface properties. Journal of Catalysis, 2017, 353, 133-140.	6.2	51
44	Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size Journal of Hazardous Materials, 2017, 339, 223-231.	12.4	111
45	Effect of Fe(II)/Fe(III) species, pH, irradiance and bacterial presence on viral inactivation in wastewater by the photo-Fenton process: Kinetic modeling and mechanistic interpretation. Applied Catalysis B: Environmental, 2017, 204, 156-166.	20.2	77
46	FeOx magnetization enhancing E. coli inactivation by orders of magnitude on Ag-TiO2 nanotubes under sunlight. Applied Catalysis B: Environmental, 2017, 202, 438-445.	20.2	57
47	Iohexol degradation in wastewater and urine by UV-based Advanced Oxidation Processes (AOPs): Process modeling and by-products identification. Journal of Environmental Management, 2017, 195, 174-185.	7.8	42
48	Comparative effect of growth media on the monitoring of E. coli inactivation and regrowth after solar and photo-Fenton treatment. Chemical Engineering Journal, 2017, 313, 109-120.	12.7	32
49	Solar photo-Fenton and UV/H 2 O 2 processes against the antidepressant Venlafaxine in urban wastewaters and human urine. Intermediates formation and biodegradability assessment. Chemical Engineering Journal, 2017, 308, 492-504.	12.7	63
50	A green solar photo-Fenton process for the elimination of bacteria and micropollutants in municipal wastewater treatment using mineral iron and natural organic acids. Applied Catalysis B: Environmental, 2017, 219, 538-549.	20.2	96
51	Recent Developments in Accelerated Antibacterial Inactivation on 2D Cu-Titania Surfaces under Indoor Visible Light. Coatings, 2017, 7, 20.	2.6	34
52	Light-Assisted Advanced Oxidation Processes for the Elimination of Chemical and Microbiological Pollution of Wastewaters in Developed and Developing Countries. Molecules, 2017, 22, 1070.	3.8	93
53	Self-Sterilizing Sputtered Films for Applications in Hospital Facilities. Molecules, 2017, 22, 1074.	3.8	19
54	Complex Treatment for the Disposal and Utilization of Process Wastewaters of the Pharmaceutical Industry. Periodica Polytechnica: Chemical Engineering, 2017, , .	1.1	3

#	Article	IF	CITATIONS
55	Stable Photocatalytic Paints Prepared from Hybrid Core-Shell Fluorinated/Acrylic/TiO2 Waterborne Dispersions. Crystals, 2016, 6, 136.	2.2	19
56	<i>In Vitro</i> and <i>In Vivo</i> Effectiveness of an Innovative Silver-Copper Nanoparticle Coating of Catheters To Prevent Methicillin-Resistant Staphylococcus aureus Infection. Antimicrobial Agents and Chemotherapy, 2016, 60, 5349-5356.	3.2	37
57	Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes. Water Research, 2016, 102, 505-515.	11.3	81
58	Innovative photo-Fenton catalysis by PE-FeOx films leading to methylene blue (MB) degradation: Kinetics, surface properties and mechanism. Applied Catalysis A: General, 2016, 519, 68-77.	4.3	18
59	A New Perspective in the Use of FeOx-TiO2 Photocatalytic Films: Indole Degradation in the Absence of Fe-Leaching. Journal of Catalysis, 2016, 342, 184-192.	6.2	17
60	Sputtered Cu-polyethylene films inducing bacteria inactivation in the dark and under low intensity sunlight. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 330, 163-168.	3.9	3
61	Innovative self-sterilizing transparent Fe–phosphate polyethylene films under visible light. RSC Advances, 2016, 6, 77066-77074.	3.6	2
62	FeOx-TiO2 Film with Different Microstructures Leading to Femtosecond Transients with Different Properties: Biological Implications under Visible Light. Scientific Reports, 2016, 6, 30113.	3.3	17
63	Solar disinfection is an augmentable, in situ -generated photo-Fenton reaction—Part 1: A review of the mechanisms and the fundamental aspects of the process. Applied Catalysis B: Environmental, 2016, 199, 199-223.	20.2	253
64	Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 2: A review of the applications for drinking water and wastewater disinfection. Applied Catalysis B: Environmental, 2016, 198, 431-446.	20.2	160
65	Microstructure of Cu–Ag Uniform Nanoparticulate Films on Polyurethane 3D Catheters: Surface Properties. ACS Applied Materials & Interfaces, 2016, 8, 56-63.	8.0	56
66	Preparation, kinetics, mechanism and properties of semi-transparent photocatalytic stable films active in dye degradation. Applied Catalysis A: General, 2016, 516, 70-80.	4.3	9
67	Bactericidal activity and mechanism of action of copper-sputtered flexible surfaces against multidrug-resistant pathogens. Applied Microbiology and Biotechnology, 2016, 100, 5945-5953.	3.6	25
68	Accelerated methylene blue (MB) degradation by Fenton reagent exposed to UV or VUV/UV light in an innovative micro photo-reactor. Applied Catalysis B: Environmental, 2016, 187, 83-89.	20.2	89
69	Castles fall from inside: Evidence for dominant internal photo-catalytic mechanisms during treatment of Saccharomyces cerevisiae by photo-Fenton at near-neutral pH. Applied Catalysis B: Environmental, 2016, 185, 150-162.	20.2	53
70	Quasi-Instantaneous Bacterial Inactivation on Cu–Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics. ACS Applied Materials & Interfaces, 2016, 8, 47-55.	8.0	51
71	Bacterial inactivation with iron citrate complex: A new source of dissolved iron in solar photo-Fenton process at near-neutral and alkaline pH. Applied Catalysis B: Environmental, 2016, 180, 379-390.	20.2	72
72	Fe vs. TiO2 Photo-assisted Processes for Enhancing the Solar Inactivation of Bacteria in Water. Chimia, 2015, 69, 7-9.	0.6	7

#	Article	IF	CITATIONS
73	Preparation and Mechanism of Cu-Decorated TiO ₂ –ZrO ₂ Films Showing Accelerated Bacterial Inactivation. ACS Applied Materials & Interfaces, 2015, 7, 12832-12839.	8.0	68
74	Light wavelength-dependent E. coli survival changes after simulated solar disinfection of secondary effluent. Photochemical and Photobiological Sciences, 2015, 14, 2238-2250.	2.9	12
75	Effect of surface pretreatment of TiO ₂ films on interfacial processes leading to bacterial inactivation in the dark and under light irradiation. Interface Focus, 2015, 5, 20140046.	3.0	36
76	Escherichia coli inactivation by neutral solar heterogeneous photo-Fenton (HPF) over hybrid iron/montmorillonite/alginate beads. Journal of Environmental Chemical Engineering, 2015, 3, 317-324.	6.7	19
77	Temperature-dependent change of light dose effects on E. coli inactivation during simulated solar treatment of secondary effluent. Chemical Engineering Science, 2015, 126, 483-487.	3.8	24
78	Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods. Water Research, 2015, 84, 295-306.	11.3	174
79	Elimination of the iodinated contrast agent iohexol in water, wastewater and urine matrices by application of photo-Fenton and ultrasound advanced oxidation processes. Journal of Environmental Chemical Engineering, 2015, 3, 2002-2009.	6.7	22
80	Solar disinfection modeling and post-irradiation response of Escherichia coli in wastewater. Chemical Engineering Journal, 2015, 281, 588-598.	12.7	40
81	New evidence for hybrid acrylic/TiO2 films inducing bacterial inactivation under low intensity simulated sunlight. Colloids and Surfaces B: Biointerfaces, 2015, 135, 1-7.	5.0	34
82	Antibacterial surfaces based on functionally graded photocatalytic Fe ₃ O ₄ @TiO ₂ core–shell nanoparticle/epoxy composites. RSC Advances, 2015, 5, 105416-105421.	3.6	16
83	Environmental considerations on solar disinfection of wastewater and the subsequent bacterial (re)growth. Photochemical and Photobiological Sciences, 2015, 14, 618-625.	2.9	24
84	Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: An initial approach. Ultrasonics Sonochemistry, 2015, 22, 527-534.	8.2	32
85	Ultrasound enhancement of near-neutral photo-Fenton for effective E. coli inactivation in wastewater. Ultrasonics Sonochemistry, 2015, 22, 515-526.	8.2	31
86	Shift from heterogeneous to homogeneous catalysis during resorcinol degradation using the solar photo-Fenton process initiated at circumneutral pH. Applied Catalysis B: Environmental, 2015, 165, 620-627.	20.2	49
87	New evidence for TiO 2 uniform surfaces leading to complete bacterial reduction in the dark: Critical issues. Colloids and Surfaces B: Biointerfaces, 2014, 123, 593-599.	5.0	45
88	TiO ₂ and TiO ₂ -Doped Films Able to Kill Bacteria by Contact: New Evidence for the Dynamics of Bacterial Inactivation in the Dark and under Light Irradiation. International Journal of Photoenergy, 2014, 2014, 1-17.	2.5	19
89	Uniform TiO2/In2O3 surface films effective in bacterial inactivation under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 279, 1-7.	3.9	24
90	Neutral solar photo-Fenton degradation of 4-nitrophenol on iron-enriched hybrid montmorillonite-alginate beads (Fe-MABs). Journal of Photochemistry and Photobiology A: Chemistry, 2014, 282, 33-40.	3.9	57

#	Article	IF	CITATIONS
91	The antagonistic and synergistic effects of temperature during solar disinfection of synthetic secondary effluent. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 280, 14-26.	3.9	37
92	Accelerated <i>Escherichia coli</i> inactivation in the dark on uniform copper flexible surfaces. Biointerphases, 2014, 9, 029012.	1.6	17
93	Elucidating bacterial regrowth: Effect of disinfection conditions in dark storage of solar treated secondary effluent. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 290, 43-53.	3.9	35
94	Innovative transparent non-scattering TiO2 bactericide thin films inducing increased E. coli cell wall fluidity. Surface and Coatings Technology, 2014, 254, 333-343.	4.8	44
95	Degradation of eight relevant micropollutants in different water matrices by neutral photo-Fenton process under UV254 and simulated solar light irradiation – A comparative study. Applied Catalysis B: Environmental, 2014, 158-159, 30-37.	20.2	63
96	Comparison of HIPIMS sputtered Ag- and Cu-surfaces leading to accelerated bacterial inactivation in the dark. Surface and Coatings Technology, 2014, 250, 14-20.	4.8	28
97	Monitoring the post-irradiation E. coli survival patterns in environmental water matrices: Implications in handling solar disinfected wastewater. Chemical Engineering Journal, 2014, 253, 366-376.	12.7	39
98	Iron-Catalyzed Low Cost Solar Activated Process for Drinking Water Disinfection in Colombian Rural Areas. , 2014, , 113-128.		0
99	Impact of different light intermittence regimes on bacteria during simulated solar treatment of secondary effluent: Implications of the inserted dark periods. Solar Energy, 2013, 98, 572-581.	6.1	28
100	Growth of TiO2/Cu films by HiPIMS for accelerated bacterial loss of viability. Surface and Coatings Technology, 2013, 232, 804-813.	4.8	70
101	Accelerated bacterial inactivation obtained by HIPIMS sputtering on low cost surfaces with concomitant reduction in the metal/semiconductor content. RSC Advances, 2013, 3, 13127.	3.6	8
102	Modification of titania nanoparticles for photocatalytic antibacterial activity via a colloidal route with glycine and subsequent annealing. Journal of Materials Research, 2013, 28, 354-361.	2.6	21
103	TiON and TiON-Ag sputtered surfaces leading to bacterial inactivation under indoor actinic light. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 256, 52-63.	3.9	62
104	The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light. Photochemical and Photobiological Sciences, 2012, 11, 821-827.	2.9	39
105	Comparison of Methods for Evaluation of the Bactericidal Activity of Copper-Sputtered Surfaces against Methicillin-Resistant Staphylococcus aureus. Applied and Environmental Microbiology, 2012, 78, 8176-8182.	3.1	45
106	Significant decrease of THMs generated during chlorination of river water by previous photo-Fenton treatment at near neutral pH. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 229, 46-52.	3.9	32
107	Advantages of highly ionized pulse plasma magnetron sputtering (HIPIMS) of silver for improved E. coli inactivation. Thin Solid Films, 2012, 520, 3567-3573.	1.8	27
108	Low-frequency ultrasound induces oxygen vacancies formation and visible light absorption in TiO2 P-25 nanoparticles. Ultrasonics Sonochemistry, 2012, 19, 383-386.	8.2	45

#	Article	IF	CITATIONS
109	New Fe-immobilized natural bentonite plate used as photo-Fenton catalyst for organic pollutant degradation. Chemosphere, 2011, 82, 1185-1189.	8.2	33
110	Photo-Fenton degradation of resorcinol mediated by catalysts based on iron species supported on polymers. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 201-206.	3.9	36
111	Effects of sonochemical parameters and inorganic ions during the sonochemical degradation of crystal violet in water. Ultrasonics Sonochemistry, 2011, 18, 440-446.	8.2	99
112	Solar disinfection of wild Salmonella sp. in natural water with a 18L CPC photoreactor: Detrimental effect of non-sterile storage of treated water. Solar Energy, 2011, 85, 1399-1408.	6.1	45
113	On the photocatalytic degradation of phenol and dichloroacetate by BiVO4: The need of a sacrificial electron acceptor. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 221-227.	3.9	56
114	Enhanced sonochemical degradation of bisphenol-A by bicarbonate ions. Ultrasonics Sonochemistry, 2010, 17, 111-115.	8.2	117
115	Flame-assisted synthesis of nanoscale, amorphous and crystalline, spherical BiVO4 with visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2010, 95, 335-347.	20.2	116
116	The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12. Applied Catalysis B: Environmental, 2010, 96, 126-141.	20.2	250
117	An innovative ultrasound, Fe2+ and TiO2 photoassisted process for bisphenol a mineralization. Water Research, 2010, 44, 2245-2252.	11.3	98
118	Dramatic enhancement of solar disinfection (SODIS) of wild Salmonella sp. in PET bottles by H2O2 addition on natural water of Burkina Faso containing dissolved iron. Chemosphere, 2010, 78, 1186-1191.	8.2	80
119	Synthesis, Characterization, and Photocatalytic Activities of Nanoparticulate N, S-Codoped TiO ₂ Having Different Surface-to-Volume Ratios. Journal of Physical Chemistry C, 2010, 114, 2717-2723.	3.1	99
120	Solar Disinfection of Water by TiO2 Photoassisted Processes: Physicochemical, Biological, and Engineering Aspects. , 2010, , 443-472.		2
121	Experimental design approach to the optimization of ultrasonic degradation of alachlor and enhancement of treated water biodegradability. Ultrasonics Sonochemistry, 2009, 16, 425-430.	8.2	54
122	Simultaneous E. coli inactivation and NOM degradation in river water via photo-Fenton process at natural pH in solar CPC reactor. A new way for enhancing solar disinfection of natural water. Chemosphere, 2009, 77, 296-300.	8.2	70
123	Sequential helio-photo-Fenton and sonication processes for the treatment of bisphenol A. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 197-203.	3.9	47
124	Influence of TiO2 concentration on the synergistic effect between photocatalysis and high-frequency ultrasound for organic pollutant mineralization in water. Applied Catalysis B: Environmental, 2008, 80, 168-175.	20.2	132
125	Bacterial inactivation and organic oxidation via immobilized photo-Fenton reagent on structured silica surfaces. Applied Catalysis B: Environmental, 2008, 84, 577-583.	20.2	36
126	Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. Ultrasonics Sonochemistry, 2008, 15, 605-611.	8.2	238

#	Article	IF	CITATIONS
127	Degradation of DBPs' precursors in river water before and after slow sand filtration by photo-Fenton process at pH 5 in a solar CPC reactor. Water Research, 2008, 42, 4125-4132.	11.3	62
128	Evaluating Microtox© as a tool for biodegradability assessment of partially treated solutions of pesticides using Fe3+ and TiO2 solar photo-assisted processes. Ecotoxicology and Environmental Safety, 2008, 69, 546-555.	6.0	43
129	Coupled photo-Fenton–biological system: effect of the Fenton parameters such as residual H2O2, Fe2 +â€ and pH on the efficiency of biological process. Water Science and Technology, 2008, 58, 1679-1685.	%2.5	3
130	Comparison of Photo-Fenton Treatment and Coupled Photo-Fenton and Biological Treatment for Detoxification of Pharmaceutical Industry Contaminants. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	2
131	Solar Photolytic and Photocatalytic Disinfection of Water at Laboratory and Field Scale. Effect of the Chemical Composition of Water and Study of the Postirradiation Events. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 100-110.	1.8	36
132	A Comparison of Solar Photocatalytic Inactivation of Waterborne E. coli Using Tris (2,2′-bipyridine)ruthenium(II), Rose Bengal, and TiO2. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 135-140.	1.8	24
133	Bisphenol A Mineralization by Integrated Ultrasound-UV-Iron (II) Treatment. Environmental Science & Technology, 2007, 41, 297-302.	10.0	185
134	Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale. Catalysis Today, 2007, 122, 128-136.	4.4	65
135	Absence of E. coli regrowth after Fe3+ and TiO2 solar photoassisted disinfection of water in CPC solar photoreactor. Catalysis Today, 2007, 124, 204-214.	4.4	88
136	Photo-Fenton and biological integrated process for degradation of a mixture of pesticides. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 186, 34-40.	3.9	83
137	Solar heterogeneous and homogeneous photocatalysis as a pre-treatment option for biotreatment. Research on Chemical Intermediates, 2007, 33, 407-420.	2.7	20
138	Biodegradability assessment of several priority hazardous substances: Choice, application and relevance regarding toxicity and bacterial activity. Chemosphere, 2006, 65, 682-690.	8.2	42
139	Enhancing biodegradability of priority substances (pesticides) by solar photo-Fenton. Water Research, 2006, 40, 1086-1094.	11.3	120
140	The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity. FEMS Microbiology Letters, 2006, 258, 18-24.	1.8	229
141	Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water. Applied Catalysis B: Environmental, 2006, 63, 222-231.	20.2	140
142	Photocatalytic Degradation ofp-Halophenols in TiO2Aqueous Suspensions: Halogen Effect on Removal Rate, Aromatic Intermediates and Toxicity Variations. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 1009-1025.	1.7	27
143	New helio-photocatalytic–photovoltaic hybrid system for simultaneous water decontamination and solar energy conversion. Solar Energy, 2005, 79, 353-359.	6.1	18
144	Optimizing the solar photo-Fenton process in the treatment of contaminated water. Determination of intrinsic kinetic constants for scale-up. Solar Energy, 2005, 79, 360-368.	6.1	78

#	Article	IF	CITATIONS
145	Use of coaxial photocatalytic reactor (CAPHORE) in the TiO2 photo-assisted treatment of mixed E. coli and Bacillus sp. and bacterial community present in wastewater. Catalysis Today, 2005, 101, 331-344.	4.4	126
146	Supported Fe/C and Fe/Nafion/C catalysts for the photo-Fenton degradation of Orange II under solar irradiation. Catalysis Today, 2005, 101, 375-382.	4.4	70
147	Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Applied Catalysis B: Environmental, 2004, 49, 99-112.	20.2	294
148	Field solar E. coli inactivation in the absence and presence of TiO2: is UV solar dose an appropriate parameter for standardization of water solar disinfection?. Solar Energy, 2004, 77, 635-648.	6.1	141
149	An innovative coupled solar-biological system at field pilot scale for the treatment of biorecalcitrant pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 159, 89-99.	3.9	125
150	Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes Chemosphere, 2003, 50, 97-104.	8.2	148
151	Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catalysis Today, 2002, 76, 301-315.	4.4	244
152	Photo-Fenton treatment of a biorecalcitrant wastewater generated in textile activities: biodegradability of the photo-treated solution. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 151, 129-135.	3.9	122
153	Interaction between E. coli inactivation and DBP-precursors — dihydroxybenzene isomers — in the photocatalytic process of drinking-water disinfection with TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 139, 233-241.	3.9	133
154	Chemisorption of phenols and acids on TiO2 surface. Applied Surface Science, 2000, 167, 51-58.	6.1	99
155	Electrochemical detoxification of a 1,4-benzoquinone solution in wastewater treatment. Water Research, 1994, 28, 887-893.	11.3	182
156	Biodegradation of Xenobiotics in a fixed bed reactor. Environmental Progress, 1993, 12, 306-311.	0.7	10
157	Inoculum standardization for biodegradability tests. Biotechnology Letters, 1993, 7, 217-222.	0.5	7
158	Synthèse du virensate de méthyle. Helvetica Chimica Acta, 1989, 72, 1061-1065.	1.6	9
159	Synthèse de l'acide décarboxythamnolique. Helvetica Chimica Acta, 1988, 71, 876-880.	1.6	9
160	Synthèse de l'ériodermine. Helvetica Chimica Acta, 1985, 68, 945-948.	1.6	8
161	Synthèse des pseudocyphellarines A et B, deux depsides du lichenPseudocyphellaria endochrysea. Helvetica Chimica Acta, 1985, 68, 1948-1951.	1.6	9