Wenjie Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10778496/publications.pdf

Version: 2024-02-01

159585 214800 3,570 47 30 47 citations g-index h-index papers 48 48 48 5179 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Preservation of alveolar ridge height through mechanical memory: A novel dental implant design. Bioactive Materials, 2021, 6, 75-83.	15.6	8
2	Dorsal approach with Glissonian approach for laparoscopic right anatomic liver resections. BMC Gastroenterology, 2021, 21, 138.	2.0	3
3	A graphene oxide-copper nanocomposite for the regeneration of the dentin-pulp complex: An odontogenic and neurovascularization-inducing material. Chemical Engineering Journal, 2021, 417, 129299.	12.7	8
4	The Translation from <i>ln Vitro</i> Bioactive Ion Concentration Screening to <i>ln Vivo</i> Application for Preventing Peri-implantitis. ACS Applied Materials & Interfaces, 2021, 13, 5782-5794.	8.0	15
5	Graphene Oxide-Copper Nanocomposites Suppress Cariogenic Streptococcus mutans Biofilm Formation. International Journal of Nanomedicine, 2021, Volume 16, 7727-7739.	6.7	23
6	Dual-modal non-invasive imaging in vitro and in vivo monitoring degradation of PLGA scaffold based gold nanoclusters. Materials Science and Engineering C, 2020, 107, 110307.	7.3	12
7	Picosecond laser texturing on titanium alloy for biomedical implants in cell proliferation and vascularization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1494-1504.	3.4	24
8	<p>A Magnesium-Incorporated Nanoporous Titanium Coating for Rapid Osseointegration</p> . International Journal of Nanomedicine, 2020, Volume 15, 6593-6603.	6.7	39
9	Human amniotic mesenchymal stromal cells promote bone regeneration via activating endogenous regeneration. Theranostics, 2020, 10, 6216-6230.	10.0	28
10	A Magnesiumâ€Enriched 3D Culture System that Mimics the Bone Development Microenvironment for Vascularized Bone Regeneration. Advanced Science, 2019, 6, 1900209.	11.2	111
11	Recent Advances in Scaffold Design and Material for Vascularized Tissueâ€Engineered Bone Regeneration. Advanced Healthcare Materials, 2019, 8, e1801433.	7.6	176
12	Laennec's approach for laparoscopic anatomic hepatectomy based on Laennec's capsule. BMC Gastroenterology, 2019, 19, 194.	2.0	12
13	The Effects of Platelet-Derived Growth Factor-BB on Bone Marrow Stromal Cell-Mediated Vascularized Bone Regeneration. Stem Cells International, 2018, 2018, 1-16.	2.5	48
14	Early effects of parathyroid hormone on vascularized bone regeneration and implant osseointegration in aged rats. Biomaterials, 2018, 179, 15-28.	11.4	64
15	Effects of Sr-HT-Gahnite on osteogenesis and angiogenesis by adipose derived stem cells for critical-sized calvarial defect repair. Scientific Reports, 2017, 7, 41135.	3.3	32
16	Osteogenesis Catalyzed by Titanium-Supported Silver Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5149-5157.	8.0	57
17	3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials, 2017, 135, 85-95.	11.4	171
18	Increased stem cells delivered using a silk gel/scaffold complex for enhanced bone regeneration. Scientific Reports, 2017, 7, 2175.	3.3	19

#	Article	IF	CITATIONS
19	3D Printing of Lotus Rootâ€Like Biomimetic Materials for Cell Delivery and Tissue Regeneration. Advanced Science, 2017, 4, 1700401.	11.2	168
20	Magnetically Controlled Growthâ€Factorâ€Immobilized Multilayer Cell Sheets for Complex Tissue Regeneration. Advanced Materials, 2017, 29, 1703795.	21.0	94
21	Growth differentiation factor 15 promotes blood vessel growth by stimulating cell cycle progression in repair of critical-sized calvarial defect. Scientific Reports, 2017, 7, 9027.	3.3	26
22	Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Scientific Reports, 2016, 6, 31769.	3.3	112
23	Graphene Oxideâ€Copper Nanocompositeâ€Coated Porous CaP Scaffold for Vascularized Bone Regeneration via Activation of Hifâ€1α. Advanced Healthcare Materials, 2016, 5, 1299-1309.	7.6	139
24	Human Stem Cells Overexpressing miR-21 Promote Angiogenesis in Critical Limb Ischemia by Targeting CHIP to Enhance HIF-1α Activity. Stem Cells, 2016, 34, 924-934.	3.2	36
25	Periâ€Implant Bone Regeneration Using <scp>rhPDGFâ€BB</scp> , <scp>BMSCs</scp> , and <scp>βâ€TCP</scp> a Canine Model. Clinical Implant Dentistry and Related Research, 2016, 18, 241-252.	in 3.7	25
26	Enhanced Osseointegration of Hierarchical Micro/Nanotopographic Titanium Fabricated by Microarc Oxidation and Electrochemical Treatment. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3840-3852.	8.0	129
27	A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration. Nanoscale, 2016, 8, 5291-5301.	5.6	128
28	Strontium delivery on topographical titanium to enhance bioactivity and osseointegration in osteoporotic rats. Journal of Materials Chemistry B, 2015, 3, 4790-4804.	5.8	31
29	Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration. Biomaterials, 2015, 56, 68-77.	11.4	132
30	Porous Silk Scaffolds for Delivery of Growth Factors and Stem Cells to Enhance Bone Regeneration. PLoS ONE, 2014, 9, e102371.	2.5	61
31	Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function. International Journal of Nanomedicine, 2014, 9, 2387.	6.7	63
32	Vacuum extraction enhances rhPDGF-BB immobilization on nanotubes to improve implant osseointegration in ovariectomized rats. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1809-1818.	3.3	38
33	Chemically regulated bioactive ion delivery platform on a titanium surface for sustained controlled release. Journal of Materials Chemistry B, 2014, 2, 283-294.	5.8	37
34	rhPDGF-BB Via ERK Pathway Osteogenesis and Adipogenesis Balancing in ADSCs for Critical-Sized Calvarial Defect Repair. Tissue Engineering - Part A, 2014, 20, 3303-3313.	3.1	42
35	Antibacterial property, angiogenic and osteogenic activity of Cu-incorporated TiO ₂ coating. Journal of Materials Chemistry B, 2014, 2, 6738-6748.	5.8	75
36	Systematic modification and evaluation of a canine model for elevation of the floor of the maxillary sinus. British Journal of Oral and Maxillofacial Surgery, 2014, 52, 784-788.	0.8	1

#	Article	IF	CITATION
37	Stimulation of bone growth following zinc incorporation into biomaterials. Biomaterials, 2014, 35, 6882-6897.	11.4	241
38	The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials, 2013, 34, 3184-3195.	11.4	282
39	Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells. International Journal of Nanomedicine, 2013, 8, 257.	6.7	70
40	The Bone-Forming Effects of HIF- \hat{l}_{\pm} -Transduced BMSCs Promote Osseointegration with Dental Implant in Canine Mandible. PLoS ONE, 2012, 7, e32355.	2.5	26
41	Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells. International Journal of Nanomedicine, 2012, 7, 4459.	6.7	64
42	Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1 \hat{l} ± mediated BMSCs. Biomaterials, 2012, 33, 2097-2108.	11.4	130
43	The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials, 2011, 32, 9415-9424.	11.4	255
44	Repairing critical-sized calvarial defects with BMSCs modified by a constitutively active form of hypoxia-inducible factor- $\hat{11}$ and a phosphate cement scaffold. Biomaterials, 2011, 32, 9707-9718.	11.4	104
45	Repair of Critical-Sized Rat Calvarial Defects Using Genetically Engineered Bone Marrow-Derived Mesenchymal Stem Cells Overexpressing Hypoxia-Inducible Factor-1α. Stem Cells, 2011, 29, 1380-1390.	3.2	99
46	Long-term outcome of cryopreserved bone-derived osteoblasts for bone regeneration in vivo. Biomaterials, 2011, 32, 4546-4555.	11.4	14
47	Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and \hat{l}^2 -TCP bioceramics., 2011, 22, 68-83.		95