Jian-Xiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1077829/publications.pdf Version: 2024-02-01

LIAN-XIANC LIU

#	Article	IF	CITATIONS
1	Gene delivery strategies for therapeutic proteins production in plants: Emerging opportunities and challenges. Biotechnology Advances, 2022, 54, 107845.	11.7	6
2	bZIP17 regulates heat stress tolerance at reproductive stage in Arabidopsis. ABIOTECH, 2022, 3, 1-11.	3.9	22
3	Regulation of Chloroplast Development and Function at Adverse Temperatures in Plants. Plant and Cell Physiology, 2022, , .	3.1	6
4	UBA domain protein SUF1 interacts with NatAâ€complex subunit NAA15 to regulate thermotolerance in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2022, 64, 1297-1302.	8.5	2
5	REVEILLE 7 inhibits the expression of the circadian clock gene <i>EARLY FLOWERING 4</i> to fineâ€ŧune hypocotyl growth in response to warm temperatures. Journal of Integrative Plant Biology, 2022, 64, 1310-1324.	8.5	9
6	Histone H3K4 methyltransferases SDG25 and ATX1 maintain heatâ€stress gene expression during recovery in Arabidopsis. Plant Journal, 2021, 105, 1326-1338.	5.7	41
7	Ectopic overexpression of a membraneâ€ŧethered transcription factor gene <i>NAC60</i> from oilseed rape positively modulates programmed cell death and ageâ€ŧriggered leaf senescence. Plant Journal, 2021, 105, 600-618.	5.7	21
8	Protein Quality Control in Plant Organelles: Current Progress and Future Perspectives. Molecular Plant, 2021, 14, 95-114.	8.3	77
9	Two B-box domain proteins, BBX28 and BBX29, regulate flowering time at low ambient temperature in Arabidopsis. Plant Molecular Biology, 2021, 106, 21-32.	3.9	17
10	Chromatin remodeling factors regulate environmental stress responses in plants. Journal of Integrative Plant Biology, 2021, 63, 438-450.	8.5	42
11	XBAT31 regulates thermoresponsive hypocotyl growth through mediating degradation of the thermosensor ELF3 in <i>Arabidopsis</i> . Science Advances, 2021, 7, .	10.3	42
12	The E3 ligase XBAT35 mediates thermoresponsive hypocotyl growth by targeting ELF3 for degradation in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 1097-1103.	8.5	24
13	Timing to grow: roles of clock in thermomorphogenesis. Trends in Plant Science, 2021, 26, 1248-1257.	8.8	16
14	Phosphoproteomic Analysis of Thermomorphogenic Responses in Arabidopsis. Frontiers in Plant Science, 2021, 12, 753148.	3.6	3
15	The FtsH-Inactive Protein FtsHi5 Is Required for Chloroplast Development and Protein Accumulation in Chloroplasts at Low Ambient Temperature in Arabidopsis. Frontiers in Plant Science, 2021, 12, 830390.	3.6	5
16	Roles of plant hormones in thermomorphogenesis. Stress Biology, 2021, 1, .	3.1	2
17	A membraneâ€essociated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnology Journal, 2020, 18, 1317-1329.	8.3	126
18	Quantitative Proteomic Analysis of ER Stress Response Reveals both Common and Specific Features in Two Contrasting Ecotypes of Arabidopsis thaliana. International Journal of Molecular Sciences, 2020, 21, 9741.	4.1	8

JIAN-XIANG LIU

#	Article	IF	CITATIONS
19	NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis. Planta, 2020, 252, 95.	3.2	14
20	Mutation of DELAYED GREENING1 impairs chloroplast RNA editing at elevated ambient temperature in Arabidopsis. Journal of Genetics and Genomics, 2020, 47, 201-212.	3.9	14
21	BLISTER-regulated vegetative growth is dependent on the protein kinase domain of ER stress modulator IRE1A in Arabidopsis thaliana. PLoS Genetics, 2019, 15, e1008563.	3.5	15
22	The β5 subunit is essential for intact 26S proteasome assembly to specifically promote plant autotrophic growth under salt stress. New Phytologist, 2019, 221, 1359-1368.	7.3	32
23	A Novel QTL qTGW3 Encodes the GSK3/SHAGGY-Like Kinase OsGSK5/OsSK41 that Interacts with OsARF4 to Negatively Regulate Grain Size and Weight in Rice. Molecular Plant, 2018, 11, 736-749.	8.3	201
24	Two B-Box Domain Proteins, BBX18 and BBX23, Interact with ELF3 and Regulate Thermomorphogenesis in Arabidopsis. Cell Reports, 2018, 25, 1718-1728.e4.	6.4	91
25	Chromatin remodeling factor CHR18 interacts with replication protein RPA1A to regulate the DNA replication stress response in Arabidopsis. New Phytologist, 2018, 220, 476-487.	7.3	8
26	Tissue-Specific Transcriptomics Reveals an Important Role of the Unfolded Protein Response in Maintaining Fertility upon Heat Stress in Arabidopsis. Plant Cell, 2017, 29, 1007-1023.	6.6	130
27	Cellulose synthesis genes <i>CESA6</i> and <i>CSI1</i> are important for salt stress tolerance in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2016, 58, 623-626.	8.5	45
28	Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytologist, 2016, 211, 418-428.	7.3	165
29	Membraneâ€associated transcription factor peptidase, siteâ€2 protease, antagonizes ABA signaling in Arabidopsis. New Phytologist, 2015, 208, 188-197.	7.3	46
30	Transcription factor interaction with COMPASS-like complex regulates histone H3K4 trimethylation for specific gene expression in plants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2900-2905.	7.1	106
31	Site-1 protease cleavage site is important for the ER stress-induced activation of membrane-associated transcription factor bZIP28 in Arabidopsis. Science China Life Sciences, 2015, 58, 270-275.	4.9	35
32	The Membrane-Associated Transcription Factor NAC089 Controls ER-Stress-Induced Programmed Cell Death in Plants. PLoS Genetics, 2014, 10, e1004243.	3.5	178
33	A plasma membraneâ€ŧethered transcription factor, <scp>NAC</scp> 062/ <scp>ANAC</scp> 062/ <scp>NTL</scp> 6, mediates the unfolded protein response in Arabidopsis. Plant Journal, 2014, 79, 1033-1043.	5.7	113
34	The plantâ€specific transcription factor gene <i><scp>NAC</scp>103</i> is induced by b <scp>ZIP</scp> 60 through a new <i>cis</i> â€regulatory element to modulate the unfolded protein response in <scp>A</scp> rabidopsis. Plant Journal, 2013, 76, 274-286.	5.7	110
35	Identification and characterization of <i>Os<scp>EBS</scp></i> , a gene involved in enhanced plant biomass and spikelet number in rice. Plant Biotechnology Journal, 2013, 11, 1044-1057.	8.3	23
36	The Lumen-Facing Domain Is Important for the Biological Function and Organelle-to-Organelle Movement of bZIP28 during ER Stress in Arabidopsis. Molecular Plant, 2013, 6, 1605-1615.	8.3	59

JIAN-XIANG LIU

#	Article	IF	CITATIONS
37	Transcriptomic Analysis of Cadmium Stress Response in the Heavy Metal Hyperaccumulator Sedum alfredii Hance. PLoS ONE, 2013, 8, e64643.	2.5	100
38	Conservation of IRE1-Regulated bZIP74 mRNA Unconventional Splicing in Rice (Oryza sativa L.) Involved in ER Stress Responses. Molecular Plant, 2012, 5, 504-514.	8.3	106
39	Reversible and Irreversible Drought-Induced Changes in the Anther Proteome of Rice (Oryza sativa L.) Genotypes IR64 and Moroberekan. Molecular Plant, 2011, 4, 59-69.	8.3	65
40	Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7247-7252.	7.1	405
41	bZIP28 and NF-Y Transcription Factors Are Activated by ER Stress and Assemble into a Transcriptional Complex to Regulate Stress Response Genes in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 782-796.	6.6	356
42	Endoplasmic Reticulum Protein Quality Control and Its Relationship to Environmental Stress Responses in Plants. Plant Cell, 2010, 22, 2930-2942.	6.6	413
43	Overexpression of an Arabidopsis gene encoding a subtilase (AtSBT5.4) produces a clavata-like phenotype. Planta, 2009, 230, 687-697.	3.2	20
44	Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant Journal, 2009, 59, 930-939.	5.7	174
45	Proteolytic processing of a precursor protein for a growthâ€promoting peptide by a subtilisin serine protease in Arabidopsis. Plant Journal, 2008, 56, 219-227.	5.7	134
46	Stressâ€induced expression of an activated form of AtbZIP17 provides protection from salt stress in <i>Arabidopsis</i> . Plant, Cell and Environment, 2008, 31, 1735-1743.	5.7	116
47	Salt stress signaling in Arabidopsis thaliana involves a membrane-bound transcription factor AtbZIP17 as a signal transducer. Plant Signaling and Behavior, 2008, 3, 56-57.	2.4	14
48	An Endoplasmic Reticulum Stress Response in <i>Arabidopsis</i> Is Mediated by Proteolytic Processing and Nuclear Relocation of a Membrane-Associated Transcription Factor, bZIP28. Plant Cell, 2008, 19, 4111-4119.	6.6	394
49	Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant Journal, 2007, 51, 897-909.	5.7	401
50	NMDA receptor antagonists reduce restraint-induced release of prolactin in male rats. Neuroendocrinology Letters, 2003, 24, 435-9.	0.2	1
51	Hypoxia alters testis development in neonatal rats. Neuroendocrinology Letters, 2002, 23, 231-7.	0.2	7