## Bruce W Arey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10772471/publications.pdf

Version: 2024-02-01

186265 175258 4,768 52 28 52 h-index citations g-index papers 53 53 53 6062 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nature Energy, 2019, 4, 796-805.                                                                                                          | 39.5 | 621       |
| 2  | Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. Joule, 2019, 3, 1662-1676.                                                                                                                                                                              | 24.0 | 598       |
| 3  | Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. Journal of Materials Chemistry, 2010, 20, 9193.                                                                                                                                         | 6.7  | 316       |
| 4  | In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High-Performance Supercapacitors. ACS Applied Materials & Supercapacitors. | 8.0  | 306       |
| 5  | Hydrothermal Dehydration of Aqueous Fructose Solutions in a Closed System. Journal of Physical Chemistry C, 2007, 111, 15141-15145.                                                                                                                                               | 3.1  | 266       |
| 6  | Role of inner solvation sheath within salt–solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28603-28613.                                 | 7.1  | 191       |
| 7  | Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries. Electrochemistry Communications, 2010, 12, 1674-1677.                                                                                                                                           | 4.7  | 173       |
| 8  | Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy. Applied and Environmental Microbiology, 2011, 77, 1254-1262.                                                                                                                      | 3.1  | 168       |
| 9  | Advanced Electrolytes for Fastâ€Charging Highâ€Voltage Lithiumâ€Ion Batteries in Wideâ€Temperature Range.<br>Advanced Energy Materials, 2020, 10, 2000368.                                                                                                                        | 19.5 | 159       |
| 10 | Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nature Communications, 2015, 6, 7589.                                                                                                                                        | 12.8 | 139       |
| 11 | Hydrothermal Syntheses of Colloidal Carbon Spheres from Cyclodextrins. Journal of Physical Chemistry C, 2008, 112, 14236-14240.                                                                                                                                                   | 3.1  | 131       |
| 12 | Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, $118$ , .                                           | 7.1  | 131       |
| 13 | Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li  LiCoO <sub>2</sub> Batteries. Advanced Materials, 2020, 32, e2004898.                                                                                                    | 21.0 | 123       |
| 14 | Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries. Journal of Materials Chemistry, 2011, 21, 10077.                                                                                                                        | 6.7  | 112       |
| 15 | Nonflammable Electrolytes for Lithium Ion Batteries Enabled by Ultraconformal Passivation Interphases. ACS Energy Letters, 2019, 4, 2529-2534.                                                                                                                                    | 17.4 | 112       |
| 16 | Template free synthesis of LiV <sub>3</sub> O <sub>8</sub> nanorods as a cathode material for high-rate secondary lithium batteries. Journal of Materials Chemistry, 2011, 21, 1153-1161.                                                                                         | 6.7  | 105       |
| 17 | High-rate cathodes based on Li3V2(PO4)3 nanobelts prepared via surfactant-assisted fabrication. Journal of Power Sources, 2011, 196, 3646-3649.                                                                                                                                   | 7.8  | 100       |
| 18 | Reaction of water-saturated supercritical CO2 with forsterite: Evidence for magnesite formation at low temperatures. Geochimica Et Cosmochimica Acta, 2012, 91, 271-282.                                                                                                          | 3.9  | 97        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF                    | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|
| 19 | Uranium in Framboidal Pyrite from a Naturally Bioreduced Alluvial Sediment. Environmental Science & En | 10.0                  | 85            |
| 20 | Chemically Active, Porous 3D-Printed Thermoplastic Composites. ACS Applied Materials & Composites. ACS Applied Materials & Composites & | 8.0                   | 73            |
| 21 | Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries. Energy Storage Materials, 2021, 34, 76-84.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.0                  | 65            |
| 22 | Reactive Ballistic Deposition of Porous TiO2Films:  Growth and Characterization. Journal of Physical Chemistry C, 2007, 111, 4765-4773.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1                   | 56            |
| 23 | Direct observation of ice nucleation events on individual atmospheric particles. Physical Chemistry Chemical Physics, 2016, 18, 29721-29731.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.8                   | 55            |
| 24 | Visualizing the iron atom exchange front in the Fe(II)-catalyzed recrystallization of goethite by atom probe tomography. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2866-2874.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.1                   | 52            |
| 25 | Fayalite dissolution and siderite formation in water-saturated supercritical CO2. Chemical Geology, 2012, 332-333, 124-135.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.3                   | 51            |
| 26 | Geochemical and mineralogical investigation of uranium in multi-element contaminated, organic-rich subsurface sediment. Applied Geochemistry, 2014, 42, 77-85.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.0                   | 40            |
| 27 | Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone. Environmental Science & Environmental Science | 10.0                  | 38            |
| 28 | Formation of submicron magnesite during reaction of natural forsterite in H2O-saturated supercritical CO2. Geochimica Et Cosmochimica Acta, 2014, 134, 197-209.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.9                   | 36            |
| 29 | Residual Waste from Hanford Tanks 241-C-203 and 241-C-204. 1. Solids Characterization. Environmental Science & Amp: Technology 2006. 40, 3749-3754. Kinetics and mechanisms of Cadmium carbonate heteroepitaxial growth at the calcite < mml:math                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0                  | 28            |
| 30 | xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>10</mml:mn><mml:mspace width="0.12em"></mml:mspace><mml:mover) etqq0<="" td="" tj=""><td>0 Оз<b>:.g</b>ВТ /(</td><td>Overkock 10 T</td></mml:mover)></mml:mrow>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 Оз <b>:.g</b> ВТ /( | Overkock 10 T |
| 31 | Tip-Enhanced Raman Nanographs: Mapping Topography and Local Electric Fields. Nano Letters, 2015, 15, 2385-2390.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.1                   | 26            |
| 32 | Resolving Iron(II) Sorption and Oxidative Growth on Hematite (001) Using Atom Probe Tomography. Journal of Physical Chemistry C, 2018, 122, 3903-3914.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.1                   | 26            |
| 33 | Dynamics of Magnesite Formation at Low Temperature and High pCO <sub>2</sub> in Aqueous Solution. Environmental Science & Eamp; Technology, 2015, 49, 10736-10744.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0                  | 25            |
| 34 | Inorganic tin aluminophosphate nanocomposite for reductive separation of pertechnetate. Environmental Science: Nano, 2016, 3, 1003-1013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.3                   | 24            |
| 35 | RedOx-controlled sorption of iodine anions by hydrotalcite composites. RSC Advances, 2016, 6, 76042-76055.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.6                   | 23            |
| 36 | Carbon dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization using soft drink. Colloid and Polymer Science, 2012, 290, 1567-1573.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                   | 17            |

| #  | ARTICLE  Ivianganese-calcium intermixing racilitates heteroepitaxial growth at the <mmi:math< th=""><th>IF</th><th>Citations</th></mmi:math<>                                                                                                                                             | IF                                         | Citations         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|
| 37 | xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.gif" overflow="scroll"> <mml:mfenced close=")" open="("><mml:mrow><mml:mn>10</mml:mn><mml:mover accent="false"><mml:mn>1</mml:mn>Â-<th>3.3<br/>·ow&gt;<th>17<br/>Il:mfenced&gt;</th></th></mml:mover></mml:mrow></mml:mfenced> | 3.3<br>·ow> <th>17<br/>Il:mfenced&gt;</th> | 17<br>Il:mfenced> |
| 38 | Perfect Strain Relaxation in Metamorphic Epitaxial Aluminum on Silicon through Primary and Secondary Interface Misfit Dislocation Arrays. ACS Nano, 2018, 12, 6843-6850.                                                                                                                  | 14.6                                       | 17                |
| 39 | Enhancing magnesite formation at low temperature and high CO2 pressure: The impact of seed crystals and minor components. Chemical Geology, 2015, 395, 119-125.                                                                                                                           | 3.3                                        | 16                |
| 40 | Characterization of Nanoporous WO3 Films Grown via Ballistic Deposition. Journal of Physical Chemistry C, 2012, 116, 10649-10655.                                                                                                                                                         | 3.1                                        | 15                |
| 41 | Adsorption Kinetics in Nanoscale Porous Coordination Polymers. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21712-21716.                                                                                                                                                            | 8.0                                        | 14                |
| 42 | Preâ€Viking Swedish hillfort glass: A prospective longâ€term alteration analogue for vitrified nuclear waste. International Journal of Applied Glass Science, 2018, 9, 540-554.                                                                                                           | 2.0                                        | 13                |
| 43 | In situ friction and wear behavior of rubber materials incorporating various fillers and/or a plasticizer in high-pressure hydrogen. Tribology International, 2021, 153, 106627.                                                                                                          | 5.9                                        | 13                |
| 44 | Pb nanowire formation on Al/lead zirconate titanate surfaces in high-pressure hydrogen. Journal of Applied Physics, 2012, 112, .                                                                                                                                                          | 2.5                                        | 10                |
| 45 | Tunable Porosity in Fused Filament 3D-Printed Blends of Intrinsically Porous Polymer and Thermoplastic Aliphatic Polyesters Polycaprolactone and Polylactic Acid. ACS Applied Polymer Materials, 2019, 1, 482-492.                                                                        | 4.4                                        | 10                |
| 46 | High-Resolution Raman Nano-Imaging with an Imperfect Probe. Journal of Physical Chemistry C, 2022, 126, 4089-4094.                                                                                                                                                                        | 3.1                                        | 6                 |
| 47 | Effect of extent of natural subsurface bioreduction on Fe-mineralogy of subsurface sediments. Journal of Physics: Conference Series, 2010, 217, 012047.                                                                                                                                   | 0.4                                        | 5                 |
| 48 | Niche Partitioning of Microbial Communities at an Ancient Vitrified Hillfort: Implications for Vitrified Radioactive Waste Disposal. Geomicrobiology Journal, 2021, 38, 36-56.                                                                                                            | 2.0                                        | 5                 |
| 49 | Characterization of Solids in Residual Wastes from Underground Storage Tanks at the Hanford Site, Washington, U.S.A Materials Research Society Symposia Proceedings, 2006, 985, 1.                                                                                                        | 0.1                                        | 2                 |
| 50 | <em>In Situ</em> Characterization of Boehmite Particles in Water Using Liquid SEM. Journal of Visualized Experiments, 2017, , .                                                                                                                                                           | 0.3                                        | 2                 |
| 51 | Identification of Fragile Microscopic Structures during Mineral Transformations in Wet Supercritical CO2. Microscopy and Microanalysis, 2013, 19, 268-275.                                                                                                                                | 0.4                                        | 1                 |
| 52 | Visualizing the Distribution of Water in Nominally Anhydrous Minerals at the Atomic Scale: Insights From Atom Probe Tomography on Fayalite. Geophysical Research Letters, 2022, 49, .                                                                                                     | 4.0                                        | 0                 |