
Sunmoon Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1077238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Interactive Dynamics of Nanocatalyst Structure and Microenvironment during Electrochemical CO ₂ Conversion. Jacs Au, 2022, 2, 562-572.	7.9	44
2	The presence and role of the intermediary CO reservoir in heterogeneous electroreduction of CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201922119.	7.1	17
3	Photoelectrochemical CO ₂ Reduction toward Multicarbon Products with Silicon Nanowire Photocathodes Interfaced with Copper Nanoparticles. Journal of the American Chemical Society, 2022, 144, 8002-8006.	13.7	46
4	<i>Operando</i> Resonant Soft X-ray Scattering Studies of Chemical Environment and Interparticle Dynamics of Cu Nanocatalysts for CO ₂ Electroreduction. Journal of the American Chemical Society, 2022, 144, 8927-8931.	13.7	18
5	Photosynthetic biohybrid coculture for tandem and tunable CO ₂ and N ₂ fixation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
6	Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis. Nano Research, 2021, 14, 3509-3513.	10.4	26
7	A New Perspective and Design Principle for Halide Perovskites: Ionic Octahedron Network (ION). Nano Letters, 2021, 21, 5415-5421.	9.1	9
8	Kinetics of moisture-induced phase transformation in inorganic halide perovskite. Matter, 2021, 4, 2392-2402.	10.0	34
9	Revealing the Phase Separation Behavior of Thermodynamically Immiscible Elements in a Nanoparticle. Nano Letters, 2021, 21, 6684-6689.	9.1	18
10	Ligand removal of Au25 nanoclusters by thermal and electrochemical treatments for selective CO2 electroreduction to CO. Journal of Chemical Physics, 2021, 155, 051101.	3.0	16
11	Heterostructured Au–Ir Catalysts for Enhanced Oxygen Evolution Reaction. , 2021, 3, 1440-1447.		20
12	Nanoparticle Assembly Induced Ligand Interactions for Enhanced Electrocatalytic CO ₂ Conversion. Journal of the American Chemical Society, 2021, 143, 19919-19927.	13.7	32
13	Cu-Ag Tandem Catalysts for High-Rate CO2 Electrolysis toward Multicarbons. Joule, 2020, 4, 1688-1699.	24.0	239
14	Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. Nature Energy, 2020, 5, 1032-1042.	39.5	99
15	Lead-free Cesium Europium Halide Perovskite Nanocrystals. Nano Letters, 2020, 20, 3734-3739.	9.1	103
16	Scaling Laws of Exciton Recombination Kinetics in Low Dimensional Halide Perovskite Nanostructures. Journal of the American Chemical Society, 2020, 142, 8871-8879.	13.7	26
17	Electrochemically scrambled nanocrystals are catalytically active for CO ₂ -to-multicarbons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9194-9201.	7.1	99
18	Copper(I)-Based Highly Emissive All-Inorganic Rare-Earth Halide Clusters. Matter, 2019, 1, 180-191.	10.0	35

Sunmoon Yu

#	Article	IF	CITATIONS
19	Rational design of protective In2O3 layer-coated carbon nanopaper membrane: Toward stable cathode for long-cycle Li-O2 batteries. Nano Energy, 2018, 46, 193-202.	16.0	58
20	Nanoscale PdO Catalyst Functionalized Co ₃ O ₄ Hollow Nanocages Using MOF Templates for Selective Detection of Acetone Molecules in Exhaled Breath. ACS Applied Materials & Interfaces, 2017, 9, 8201-8210.	8.0	240
21	Conducting Nanopaper: A Carbon-Free Cathode Platform for Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 673-680.	17.4	30
22	Mesoporous orthorhombic Nb2O5 nanofibers as pseudocapacitive electrodes with ultra-stable Li storage characteristics. Journal of Power Sources, 2017, 360, 434-442.	7.8	68
23	2D WS ₂ -edge functionalized multi-channel carbon nanofibers: effect of WS ₂ edge-abundant structure on room temperature NO ₂ sensing. Journal of Materials Chemistry A, 2017, 5, 8725-8732.	10.3	122
24	Dimensional Effects of MoS ₂ Nanoplates Embedded in Carbon Nanofibers for Bifunctional Li and Na Insertion and Conversion Reactions. ACS Applied Materials & Interfaces, 2016, 8, 26758-26768.	8.0	62
25	Metal Chelation Assisted In Situ Migration and Functionalization of Catalysts on Peapod-Like Hollow SnO ₂ toward a Superior Chemical Sensor. Small, 2016, 12, 5989-5997.	10.0	61
26	Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. Journal of Materials Chemistry A, 2016, 4, 703-750.	10.3	350
27	Rational Design of Efficient Electrocatalysts for Hydrogen Evolution Reaction: Single Layers of WS ₂ Nanoplates Anchored to Hollow Nitrogen-Doped Carbon Nanofibers. ACS Applied Materials & Interfaces, 2015, 7, 28116-28121.	8.0	92
28	Improved high temperature integration of Al2O3 on MoS2 by using a metal oxide buffer layer. Applied Physics Letters, 2015, 106, .	3.3	31
29	Single layers of WS ₂ nanoplates embedded in nitrogen-doped carbon nanofibers as anode materials for lithium-ion batteries. Nanoscale, 2015, 7, 11945-11950.	5.6	104