Minija Tamosiunaite

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10771078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hippocampal CA1 Place Cells Encode Intended Destination on a Maze with Multiple Choice Points. Journal of Neuroscience, 2007, 27, 9769-9779.	3.6	141
2	Joining Movement Sequences: Modified Dynamic Movement Primitives for Robotics Applications Exemplified on Handwriting. IEEE Transactions on Robotics, 2012, 28, 145-157.	10.3	119
3	Learning to pour with a robot arm combining goal and shape learning for dynamic movement primitives. Robotics and Autonomous Systems, 2011, 59, 910-922.	5.1	83
4	A Simple Ontology of Manipulation Actions Based on Hand-Object Relations. IEEE Transactions on Autonomous Mental Development, 2013, 5, 117-134.	1.6	53
5	Interaction learning for dynamic movement primitives used in cooperative robotic tasks. Robotics and Autonomous Systems, 2013, 61, 1450-1459.	5.1	50
6	Hippocampal place cells encode intended destination, and not a discriminative stimulus, in a conditional Tâ€maze task. Hippocampus, 2012, 22, 534-543.	1.9	35
7	Odor supported place cell model and goal navigation in rodents. Journal of Computational Neuroscience, 2008, 25, 481-500.	1.0	30
8	Model-free incremental learning of the semantics of manipulation actions. Robotics and Autonomous Systems, 2015, 71, 118-133.	5.1	28
9	Task adaptation through exploration and action sequencing. , 2009, , .		24
10	Recognition and prediction of manipulation actions using Enriched Semantic Event Chains. Robotics and Autonomous Systems, 2018, 110, 173-188.	5.1	14
11	Learning to reach by reinforcement learning using a receptive field based function approximation approach with continuous actions. Biological Cybernetics, 2009, 100, 249-260.	1.3	13
12	Semantic analysis of manipulation actions using spatial relations. , 2017, , .		13
13	Behavioral analysis of differential hebbian learning in closed-loop systems. Biological Cybernetics, 2010, 103, 255-271.	1.3	12
14	Path-finding in real and simulated rats: assessing the influence of path characteristics on navigation learning. Journal of Computational Neuroscience, 2008, 25, 562-582.	1.0	10
15	A Novel Trajectory Generation Method for Robot Control. Journal of Intelligent and Robotic Systems: Theory and Applications, 2012, 68, 165-184.	3.4	10
16	Self-influencing synaptic plasticity: Recurrent changes of synaptic weights can lead to specific functional properties. Journal of Computational Neuroscience, 2007, 23, 113-127.	1.0	9
17	Execution of a dual-object (pushing) action with semantic event chains. , 2011, , .		8
18	Applying statistical generalization to determine search direction for reinforcement learning of		8

movement primitives., 2012,,.

Minija Tamosiunaite

#	Article	IF	CITATIONS
19	Caffe2Unity: Immersive Visualization and Interpretation of Deep Neural Networks. Electronics (Switzerland), 2022, 11, 83.	3.1	7
20	Accurate position and velocity control for trajectories based on dynamic movement primitives. , 2011, , \cdot		6
21	Developing velocity sensitivity in a model neuron by local synaptic plasticity. Biological Cybernetics, 2007, 96, 507-518.	1.3	5
22	One-Shot Multi-Path Planning for Robotic Applications Using Fully Convolutional Networks. , 2020, , .		5
23	One-Shot Multi-Path Planning Using Fully Convolutional Networks in a Comparison to Other Algorithms. Frontiers in Neurorobotics, 2020, 14, 600984.	2.8	5
24	Generalizing objects by analyzing language. , 2011, , .		4
25	Modified dynamic movement primitives for joining movement sequences. , 2011, , .		4
26	Prediction of Manipulation Action Classes Using Semantic Spatial Reasoning. , 2018, , .		4
27	Cut & recombine: reuse of robot action components based on simple language instructions. International Journal of Robotics Research, 2019, 38, 1179-1207.	8.5	4
28	Using enriched semantic event chains to model human action prediction based on (minimal) spatial information. PLoS ONE, 2020, 15, e0243829.	2.5	4
29	Learning and Chaining of Motor Primitives for Goal-directed Locomotion of a Snakelike Robot with Screw-drive Units. International Journal of Advanced Robotic Systems, 0, , 1.	2.1	3
30	Touching events predict human action segmentation in brain and behavior. NeuroImage, 2021, 243, 118534.	4.2	3
31	Semi-supervised Learning of Action Ontology from Domain-Specific Corpora. Communications in Computer and Information Science, 2013, , 173-185.	0.5	2
32	Perceptual influence of elementary three-dimensional geometry: (1) objectness. Frontiers in Psychology, 2015, 6, 1317.	2.1	1
33	Differential Hebbian learning with time-continuous signals for active noise reduction. PLoS ONE, 2022, 17, e0266679.	2.5	1
34	Perceptual influence of elementary three-dimensional geometry: (2) fundamental object parts. Frontiers in Psychology, 2015, 6, 1427.	2.1	0
35	Anticipation of Everyday Life Manipulation Actions in Virtual Reality. , 2019, , .		0
36	Helping a robot to understand human actions and objects: a grammatical view. Artificial Life and Robotics, 2020, 25, 388-392.	1.2	0

#	Article	IF	CITATIONS
37	Bootstrapping Concept Formation in Small Neural Networks. IEEE Transactions on Cognitive and Developmental Systems, 2022, , 1-1.	3.8	0
38	Title is missing!. , 2020, 15, e0243829.		0
39	Title is missing!. , 2020, 15, e0243829.		0
40	Title is missing!. , 2020, 15, e0243829.		0
41	Title is missing!. , 2020, 15, e0243829.		0
42	Title is missing!. , 2020, 15, e0243829.		0