Timothy R Filley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1077029/publications.pdf

Version: 2024-02-01

112 7,408 papers citations

44 h-index 83 g-index

112 all docs 112 docs citations 112 times ranked 8837 citing authors

#	Article	IF	CITATIONS
1	Tillage-induced surface soil roughness controls the chemistry and physics of eroded particles at early erosion stage. Soil and Tillage Research, 2021, 207, 104807.	5. 6	18
2	The Spatiotemporal Evolution of Storm Pulse Particulate Organic Carbon in a Low Gradient, Agriculturally Dominated Watershed. Frontiers in Water, 2021, 3, .	2.3	5
3	Signatures of an abiotic decomposition pathway in temperate forest leaf litter. Biogeochemistry, 2021, 153, 177-190.	3.5	11
4	Noninvasive assessment of microbial activity by realtime monitoring degradation of cellulose acetate via electrochemical impedance measurement. Sensors and Actuators A: Physical, 2021, 321, 112543.	4.1	8
5	A Self-Powered, Real-Time, LoRaWAN IoT-Based Soil Health Monitoring System. IEEE Internet of Things Journal, 2021, 8, 9278-9293.	8.7	36
6	Occurrence and probabilistic health risk assessment (PRA) of dissolved metals in surface water sources in Southern Peru. Environmental Advances, 2021, 5, 100102.	4.8	6
7	Aboveground litter addition for five years changes the chemical composition of soil organic matter in a temperate deciduous forest. Soil Biology and Biochemistry, 2021, 161, 108381.	8.8	12
8	Revealing the Thermal Safety of Prussian Blue Cathode for Safer Nonaqueous Batteries. Advanced Energy Materials, 2021, 11, 2101764.	19.5	29
9	Conversion of grassland into cropland affects microbial residue carbon retention in both surface and subsurface soils of a temperate agroecosystem. Biology and Fertility of Soils, 2020, 56, 137-143.	4.3	12
10	Plastic film mulching and nitrogen fertilization enhance the conversion of newly-added maize straw to water-soluble organic carbon. Soil and Tillage Research, 2020, 197, 104527.	5.6	12
11	Warming yields distinct accumulation patterns of microbial residues in dry and wet alpine grasslands on the Qinghai-Tibetan Plateau. Biology and Fertility of Soils, 2020, 56, 881-892.	4.3	19
12	A new dynamic wetness index (DWI) predicts soil moisture persistence and correlates with key indicators of surface soil geochemistry. Geoderma, 2020, 368, 114239.	5.1	8
13	The impact of tillage row orientation on physical and chemical sediment enrichment., 2020, 3, e20007.		8
14	Using Remote Sensing to Discover Historic Context of Humanâ€Environmental Water Resource Dynamics. Journal of Contemporary Water Research and Education, 2020, 171, 74-92.	0.7	2
15	Background and Research Prospect of Geoâ€ecological Survey and Monitor in the Critical Zone of Black Soil. Acta Geologica Sinica, 2019, 93, 126-129.	1.4	0
16	Controls on soil organic carbon stability and temperature sensitivity with increased aboveground litter input in deciduous forests of different forest ages. Soil Biology and Biochemistry, 2019, 134, 90-99.	8.8	22
17	Threeâ€Dimensional Modeling of the Coevolution of Landscape and Soil Organic Carbon. Water Resources Research, 2019, 55, 1218-1241.	4.2	11
18	Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nature Microbiology, 2019, 4, 864-875.	13.3	68

#	Article	IF	CITATIONS
19	Quantitative analysis of diverse sporomorph-derived sporopollenins. Phytochemistry, 2019, 162, 207-215.	2.9	8
20	Changes of microbial residues after wetland cultivation and restoration. Biology and Fertility of Soils, 2019, 55, 405-409.	4.3	16
21	Tree taxa and pyrolysis temperature interact to control pyrogenic organic matter induced native soil organic carbon priming. Soil Biology and Biochemistry, 2018, 119, 174-183.	8.8	7
22	Critical transition in critical zone of intensively managed landscapes. Anthropocene, 2018, 22, 10-19.	3.3	72
23	Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management. Geoderma, 2018, 313, 154-162.	5.1	36
24	Interacting Controls of Pyrolysis Temperature and Plant Taxa on the Degradability of PyOM in Fire-Prone Northern Temperate Forest Soil. Soil Systems, 2018, 2, 48.	2.6	9
25	The Role of Hydraulic Connectivity and Management on Soil Aggregate Size and Stability in the Clear Creek Watershed, Iowa. Geosciences (Switzerland), 2018, 8, 470.	2.2	16
26	Control of tillage disturbance on the chemistry and proportion of raindrop-liberated particles from soil aggregates. Geoderma, 2018, 330, 19-29.	5.1	22
27	Litter quality, dispersal and invasion drive earthworm community dynamics and forest soil development. Oecologia, 2018, 188, 237-250.	2.0	21
28	Photooxidation of pyrogenic organic matter reduces its reactive, labile C pool and the apparent soil oxidative microbial enzyme response. Geoderma, 2017, 293, 10-18.	5.1	11
29	Long-term changes in land use impact the accumulation of microbial residues in the particle-size fractions of a Mollisol. Biology and Fertility of Soils, 2017, 53, 281-286.	4. 3	29
30	Degradation and Microbial Uptake of C ₆₀ Fullerols in Contrasting Agricultural Soils. Environmental Science & Enviro	10.0	21
31	Inconsistencies between 14C and short-lived radionuclides-based sediment accumulation rates: Effects of long-term remineralization. Journal of Environmental Radioactivity, 2017, 174, 10-16.	1.7	22
32	Applicability of a "Multi-Stage Pulse Labeling―15N Approach to Phenotype N Dynamics in Maize Plant Components during the Growing Season. Frontiers in Plant Science, 2017, 8, 1360.	3.6	20
33	Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation. Biogeosciences, 2016, 13, 6565-6586.	3.3	23
34	Belowground competition among invading detritivores. Ecology, 2016, 97, 160-170.	3.2	35
35	Patterns of woody plant-derived soil carbon losses and persistence after brush management in a semi-arid grassland. Plant and Soil, 2016, 406, 277-293.	3.7	16
36	Is current biochar research addressing global soil constraints for sustainable agriculture?. Agriculture, Ecosystems and Environment, 2016, 226, 25-32.	5. 3	96

#	Article	IF	CITATIONS
37	Novel molecular proxies for inferring pyrogenic black carbon oxidation state using thermally assisted hydrolysis and methylation (THM-GC–MS) with 13C-labeled tetramethylammonium hydroxide (TMAH). Journal of Analytical and Applied Pyrolysis, 2016, 121, 146-154.	5.5	9
38	Tree taxa and pyrolysis temperature interact to control the efficacy of pyrogenic organic matter formation. Biogeochemistry, 2016, 130, 103-116.	3.5	22
39	Grassland to woodland transitions: Dynamic response of microbial community structure and carbon use patterns. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1675-1688.	3.0	21
40	Changes in northeast African hydrology and vegetation associated with Pliocene–Pleistocene sapropel cycles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150243.	4.0	22
41	Size and variability of crop productivity both impacted by CO2 enrichment and warmingâ€"A case study of 4 year field experiment in a Chinese paddy. Agriculture, Ecosystems and Environment, 2016, 221, 40-49.	5.3	56
42	Soil microbial response to photo-degraded C60 fullerenes. Environmental Pollution, 2016, 211, 338-345.	7.5	16
43	Weathering of pyrogenic organic matter induces fungal oxidative enzyme response in single culture inoculation experiments. Organic Geochemistry, 2016, 92, 32-41.	1.8	26
44	From soilscapes to landscapes: A landscapeâ€oriented approach to simulate soil organic carbon dynamics in intensively managed landscapes. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2375-2401.	3.0	41
45	Bi-national research and education cooperation in the U.SChina EcoPartnership for Environmental Sustainability. Journal of Renewable and Sustainable Energy, 2015, 7, 041512.	2.0	2
46	Incipient changes of lignin and substituted fatty acids under N addition in a Chinese forest soil. Organic Geochemistry, 2015, 79, 14-20.	1.8	13
47	Carbon isotopic composition of lignin biomarkers: Evidence ofÂgrassland over the Gangetic plain during LGM. Quaternary International, 2015, 355, 194-201.	1.5	5
48	Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland. Soil Biology and Biochemistry, 2015, 81, 159-167.	8.8	140
49	Oxidative enzymatic response of white-rot fungi to single-walled carbon nanotubes. Environmental Pollution, 2014, 193, 197-204.	7. 5	42
50	Effects of elevated CO 2 on the extractable amino acids of leaf litter and fine roots. New Phytologist, 2014, 202, 1257-1266.	7.3	14
51	Validation of PyMBMS as a High-throughput Screen for Lignin Abundance in Lignocellulosic Biomass of Grasses. Bioenergy Research, 2014, 7, 899-908.	3.9	19
52	Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic. Chemical Geology, 2014, 368, 104-117.	3.3	81
53	Controls on wood and leaf litter incorporation into soil fractions in forests at different successional stages. Soil Biology and Biochemistry, 2014, 69, 212-222.	8.8	42
54	Coupled response of soil carbon and nitrogen pools and enzyme activities to nitrogen and water addition in a semi-arid grassland of Inner Mongolia. Plant and Soil, 2014, 381, 323-336.	3.7	99

#	Article	IF	CITATIONS
55	Increased belowground carbon inputs and warming promote loss ofÂsoil organic carbon through complementary microbial responses. Soil Biology and Biochemistry, 2014, 76, 57-69.	8.8	115
56	Land use, water quality, and the history of coral assemblages at Bocas del Toro, Panam \tilde{A}_i . Marine Ecology - Progress Series, 2014, 504, 159-170.	1.9	51
57	Colocalizing incipient reactions in wood degraded by the brown rot fungus Postia placenta. International Biodeterioration and Biodegradation, 2013, 83, 56-62.	3.9	20
58	The combined controls of land use legacy and earthworm activity on soil organic matter chemistry and particle association during afforestation. Organic Geochemistry, 2013, 58, 56-68.	1.8	33
59	Do the large carbon isotopic excursions in terrestrial organic matter across Paleocene–Eocene boundary in India indicate intensification of tropical precipitation?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 387, 91-103.	2.3	55
60	Long-term incubations of size and density separated soil fractions to inform soil organic carbon decay dynamics. Soil Biology and Biochemistry, 2013, 57, 496-503.	8.8	28
61	Changes to soil organic N dynamics with leguminous woody plant encroachment into grasslands. Biogeochemistry, 2013, 113, 307-321.	3.5	31
62	Processes controlling the production of aromatic water-soluble organic matter during litter decomposition. Soil Biology and Biochemistry, 2013, 67, 133-139.	8.8	45
63	A comparative study of the molecular composition of a grassland soil with adjacent unforested and afforested moorland ecosystems. Organic Geochemistry, 2012, 42, 1519-1528.	1.8	18
64	Soil microbial community dynamics over a maize (Zea mays L.) growing season under conventional- and no-tillage practices in a rainfed agroecosystem. Soil and Tillage Research, 2012, 124, 153-160.	5.6	122
65	Degree of woody encroachment into grasslands controls soil carbohydrate and amino compound changes during long term laboratory incubation. Organic Geochemistry, 2012, 52, 23-31.	1.8	14
66	Lignocellulose modifications by brown rot fungi and their effects, as pretreatments, on cellulolysis. Bioresource Technology, 2012, 116, 147-154.	9.6	67
67	Chronic N deposition does not apparently alter the biochemical composition of forest floor and soil organic matter. Soil Biology and Biochemistry, 2012, 54, 7-13.	8.8	28
68	A study of lignin degradation in leaf and needle litter using 13C-labelled tetramethylammonium hydroxide (TMAH) thermochemolysis: Comparison with CuO oxidation and van Soest methods. Organic Geochemistry, 2011, 42, 1271-1278.	1.8	29
69	Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Global Change Biology, 2011, 17, 1097-1107.	9.5	318
70	Controls on soil carbon accumulation during woody plant encroachment: Evidence from physical fractionation, soil respiration, and $\hat{\Gamma}$ 13C of respired CO2. Soil Biology and Biochemistry, 2011, 43, 1678-1687.	8.8	56
71	Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests. Biological Invasions, 2011, 13, 1165-1182.	2.4	75
72	Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 541-555.	3.0	155

#	Article	lF	Citations
73	Sources of Terrestrial Organic Carbon in the Mississippi Plume Region: Evidence for the Importance of Coastal Marsh Inputs. Aquatic Geochemistry, 2011, 17, 431-456.	1.3	87
74	Crop Nitrogen Uptake and Soil Phenols Accumulation under Continuous Rice Cropping in Arkansas. Soil Science Society of America Journal, 2009, 73, 952-960.	2.2	18
75	Biomimetic oxidative treatment of spruce wood studied by pyrolysis–molecular beam mass spectrometry coupled with multivariate analysis and 13C-labeled tetramethylammonium hydroxide thermochemolysis: implications for fungal degradation of wood. Journal of Biological Inorganic Chemistry, 2009, 14, 1253-1263.	2.6	24
76	Earthworms, stand age, and species composition interact to influence particulate organic matter chemistry during forest succession. Biogeochemistry, 2009, 92, 61-82.	3.5	53
77	Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial-and mineral-controlled soil organic matter stabilization. Biogeochemistry, 2009, 96, 209-231.	3.5	304
78	Fungal diversity and deterioration in mummified woods from the ad Astra Ice Cap region in the Canadian High Arctic. Polar Biology, 2009, 32, 751-758.	1.2	24
79	Sources of plantâ€derived carbon and stability of organic matter in soil: implications for global change. Global Change Biology, 2009, 15, 2003-2019.	9.5	215
80	The effect of afforestation on the soil organic carbon (SOC) of a peaty gley soil using on-line thermally assisted hydrolysis and methylation (THM) in the presence of 13C-labelled tetramethylammonium hydroxide (TMAH). Journal of Analytical and Applied Pyrolysis, 2009, 85, 417-425.	5.5	37
81	Late Quaternary vegetation history of southeast Africa: The molecular isotopic record from Lake Malawi. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 275, 100-112.	2.3	106
82	White-Rot Basidiomycete-Mediated Decomposition of C ₆₀ Fullerol. Environmental Science & Environmental & Environment	10.0	89
83	Simultaneous analysis of tannin and lignin signatures in soils by thermally assisted hydrolysis and methylation using 13C-labeled TMAH. Journal of Analytical and Applied Pyrolysis, 2008, 83, 227-231.	5.5	28
84	Comparison of the chemical alteration trajectory of $\langle i \rangle$ Liriodendron tulipifera L. $\langle i \rangle$ leaf litter among forests with different earthworm abundance. Journal of Geophysical Research, 2008, 113, .	3.3	49
85	Chemical changes to nonaggregated particulate soil organic matter following grasslandâ€ŧoâ€woodland transition in a subtropical savanna. Journal of Geophysical Research, 2008, 113, .	3.3	96
86	Comparison of two methods for the analysis of lignin in marine sediments: CuO oxidation versus tetramethylammonium hydroxide (TMAH) thermochemolysis. Organic Geochemistry, 2008, 39, 1454-1461.	1.8	39
87	Foliar uptake of atmospheric organic nitrates. Geophysical Research Letters, 2008, 35, .	4.0	39
88	Reductive Debromination of Polybrominated Diphenyl Ethers in Anaerobic Sediment and a Biomimetic System. Environmental Science & Environmental Science	10.0	209
89	Lignin degradation in wood-feeding insects. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12932-12937.	7.1	279
90	Residue Carbon Stabilization in Soil Aggregates of Noâ€Till and Tillage Management of Dryland Cropping Systems. Soil Science Society of America Journal, 2008, 72, 507-513.	2.2	54

#	Article	IF	Citations
91	Assessment of lignin and (poly-)phenol transformations in oak (Quercus robur) dominated soils by 13C-TMAH thermochemolysis. Organic Geochemistry, 2007, 38, 551-565.	1.8	50
92	The role of hydrology in annual organic carbon loads and terrestrial organic matter export from a midwestern agricultural watershed. Geochimica Et Cosmochimica Acta, 2007, 71, 1448-1462.	3.9	161
93	Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries. Geochimica Et Cosmochimica Acta, 2007, 71, 4425-4437.	3.9	136
94	Photodegradation of Decabromodiphenyl Ether Adsorbed onto Clay Minerals, Metal Oxides, and Sediment. Environmental Science & Eamp; Technology, 2006, 40, 215-220.	10.0	214
95	Birnessite mediated debromination of decabromodiphenyl ether. Chemosphere, 2006, 64, 1801-1807.	8.2	19
96	The contribution of polyhydroxyl aromatic compounds to tetramethylammonium hydroxide lignin-based proxies. Organic Geochemistry, 2006, 37, 711-727.	1.8	59
97	Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation. Soil Biology and Biochemistry, 2006, 38, 3313-3324.	8.8	370
98	Flood pulse influences on terrestrial organic matter export from an agricultural watershed. Journal of Geophysical Research, 2005, 110 , n/a - n/a .	3.3	118
99	Photochemistry and nature of organic matter in Arctic and Antarctic snow. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	123
100	Temporal variability in sources of dissolved organic carbon in the lower Mississippi river. Geochimica Et Cosmochimica Acta, 2004, 68, 959-967.	3.9	178
101	Assaying the catalytic potential of transition metal sulfides for abiotic carbon fixation. Geochimica Et Cosmochimica Acta, 2004, 68, 2185-2196.	3.9	116
102	Assessment of Fungal Wood Decay by Lignin Analysis Using Tetramethylammonium Hydroxide (TMAH) and ¹³ C-Labeled TMAH Thermochemolysis. ACS Symposium Series, 2003, , 119-139.	0.5	20
103	Biogeochemical controls on reaction of sedimentary organic matter and aqueous sulfides in holocene sediments of Mud Lake, Florida. Geochimica Et Cosmochimica Acta, 2002, 66, 937-954.	3.9	56
104	Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Organic Geochemistry, 2002, 33, 111-124.	1.8	238
105	Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5487-5490.	7.1	355
106	An isotopic biogeochemical assessment of shifts in organic matter input to Holocene sediments from Mud Lake, Florida. Organic Geochemistry, 2001, 32, 1153-1167.	1.8	69
107	Nitrogen cycling by wood decomposing soft-rot fungi in the "King Midas tomb," Gordion, Turkey. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13346-13350.	7.1	43
108	The application of 13C-labeled tetramethylammonium hydroxide (13C-TMAH) thermochemolysis to the study of fungal degradation of wood. Organic Geochemistry, 2000, 31, 181-198.	1.8	105

TIMOTHY R FILLEY

#	Article	IF	CITATIONS
109	Primordial Carbonylated Iron-Sulfur Compounds and the Synthesis of Pyruvate. Science, 2000, 289, 1337-1340.	12.6	392
110	Tetramethylammonium hydroxide (TMAH) thermochemolysis: proposed mechanisms based upon the application of 13C-labeled TMAH to a synthetic model lignin dimer. Organic Geochemistry, 1999, 30, 607-621.	1.8	124
111	Compound-Specific Isotope Analyses of Products from Carbonization of a Fluid Catalytic Cracking Decant Oil Doped with 13C-Enriched 4-Methyldibenzothiophene. Energy & Decant Oil Doped with 13C-Enriched 4-Methyldibenzothiophene. Energy & Decant Oil Doped with 13C-Enriched 4-Methyldibenzothiophene.	5.1	8
112	Carbon isotope relationships between sulfide-bound steroids and proposed functionalized lipid precursors in sediments from the Santa Barbara Basin, California. Organic Geochemistry, 1996, 25, 367-377.	1.8	7