List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1076791/publications.pdf Version: 2024-02-01

Ημλ Εμ

#	Article	IF	CITATIONS
1	Palladium-catalyzed [3 + 3] annulations of 1-alkyl-indolin-2-imines and dialkyl (2-methylenepropane-1,3-diyl) dicarbonates. Organic Chemistry Frontiers, 2022, 9, 3515-3520.	4.5	2
2	Transcriptome and co-expression network analysis reveal molecular mechanisms of mucilage formation during seed development in Artemisia sphaerocephala. Carbohydrate Polymers, 2021, 251, 117044.	10.2	9
3	Investigation of flavonoid expression and metabolite content patterns during seed formation of <i>Artemisia sphaerocephala</i> Krasch Seed Science Research, 2021, 31, 136-148.	1.7	3
4	Synthesis of Chiral Propargylamines, Chiral 1,2â€Dihydronaphtho[2,1â€b]furans and Naphtho[2,1â€b]furans with Câ€Alkynyl N,N′â€diâ€(tertâ€butoxycarbonyl)â€aminals and βâ€Naphthols. Chemistry - A European Jour 27, 12884-12889.	na s, 2 021,	6
5	Photoinduced Iron-Catalyzed <i>ipso</i> -Nitration of Aryl Halides via Single-Electron Transfer. ACS Catalysis, 2021, 11, 9561-9568.	11.2	27
6	Synthesis of Spirotetrahydrofuran Oxindoles via Palladium-Catalyzed [4 + 1] Cycloaddition of Diphenyl 2-Oxoindolin-3-yl Phosphates and 2-Methylidenetrimethylene Carbonate. Organic Letters, 2021, 23, 6499-6503.	4.6	17
7	Transcriptomic Analysis Reveals Key Genes Involved in Oil and Linoleic Acid Biosynthesis during Artemisia sphaerocephala Seed Development. International Journal of Molecular Sciences, 2021, 22, 8369.	4.1	6
8	Soil bacterial communities vary with grassland degradation in the Qinghai Lake watershed. Plant and Soil, 2021, 460, 541-557.	3.7	16
9	Photocatalytic cross-couplings <i>via</i> the cleavage of N–O bonds. Chemical Communications, 2021, 57, 9656-9671.	4.1	23
10	Transcriptome Analysis of Zygophyllum xanthoxylum Adaptation Strategies to Phosphate Stress. Frontiers in Plant Science, 2021, 12, 723595.	3.6	4
11	Bioorthogonal Ligation and Cleavage by Reactions of Chloroquinoxalines with <i>ortho</i> â€Dithiophenols. Angewandte Chemie, 2020, 132, 3700-3706.	2.0	5
12	Bioorthogonal Ligation and Cleavage by Reactions of Chloroquinoxalines with <i>ortho</i> â€Ðithiophenols. Angewandte Chemie - International Edition, 2020, 59, 3671-3677.	13.8	13
13	Organocatalytic Atroposelective Construction of Axially Chiral <i>N</i> -Aryl Benzimidazoles Involving Carbon–Carbon Bond Cleavage. Organic Letters, 2020, 22, 6382-6387.	4.6	36
14	A sodium trifluoromethanesulfinate-mediated photocatalytic strategy for aerobic oxidation of alcohols. Chemical Communications, 2020, 56, 12443-12446.	4.1	25
15	Organocatalytic asymmetric synthesis of arylindolyl indolin-3-ones with both axial and central chirality. Chemical Communications, 2020, 56, 12648-12651.	4.1	30
16	Bioorthogonal Ligations and Cleavages in Chemical Biology. ChemistryOpen, 2020, 9, 835-853.	1.9	24
17	Bacterial Communities in Stream Biofilms in a Degrading Grassland Watershed on the Qinghai–Tibet Plateau. Frontiers in Microbiology, 2020, 11, 1021.	3.5	13
18	Light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C–H bonds. Green Chemistry, 2020, 22, 4357-4363.	9.0	68

#	Article	IF	CITATIONS
19	Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Science of the Total Environment, 2020, 722, 137910.	8.0	88
20	C:N:P stoichiometry and nutrient limitation of stream biofilms impacted by grassland degradation on the Qinghai-Tibet Plateau. Biogeochemistry, 2020, 150, 31-44.	3.5	8
21	Highly Enantioselective Iridium-Catalyzed Cascade Double Allylation Strategy: Synthesis of Pyrrolidinoindolines with an All-Carbon Quaternary Stereocenter. Organic Letters, 2019, 21, 8501-8505.	4.6	14
22	Cloning and functional analysis of the FAD2 gene family from desert shrub Artemisia sphaerocephala. BMC Plant Biology, 2019, 19, 481.	3.6	13
23	lridium-catalyzed intramolecular enantioselective allylation of quinazolin-4(3 <i>H</i>)-one derivatives. Organic and Biomolecular Chemistry, 2019, 17, 6461-6464.	2.8	9
24	Chiral Phosphoric Acid Catalyzed Asymmetric Addition of 2-(Vinyloxy)ethanol to Imines and Applications of the Products. Organic Letters, 2019, 21, 5335-5340.	4.6	10
25	Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams. Ecology, 2019, 100, e02755.	3.2	26
26	Superbase-promoted selective carbon–carbon bond cleavage driven by aromatization. Organic and Biomolecular Chemistry, 2019, 17, 4984-4989.	2.8	2
27	1-Alkyl-3-alkylindolin-2-imine hydrochlorides as useful building blocks in the copper-catalyzed synthesis of polycyclic indoline scaffolds. RSC Advances, 2019, 9, 8369-8372.	3.6	8
28	Axially Chiral Cyclic Phosphoric Acid Enabled Enantioselective Sequential Additions. Organic Letters, 2019, 21, 2498-2503.	4.6	25
29	Why are male Chinese smokers unwilling to quit? A multicentre cross-sectional study on smoking rationalisation and intention to quit. BMJ Open, 2019, 9, e025285.	1.9	14
30	Photocatalyst-Free Visible-Light Photoredox Dearomatization of Phenol Derivatives Containing Ketoximes: An Easy Access to Spiropyrrolines. Organic Letters, 2019, 21, 1799-1803.	4.6	37
31	Copper-Catalyzed Cascade Synthesis of [1,2,4]-Triazoloquinazolinones. Synlett, 2018, 29, 1395-1399.	1.8	4
32	A methylene blue-based near-infrared fluorescent probe for rapid detection of hypochlorite in tap water and living cells. RSC Advances, 2018, 8, 14603-14608.	3.6	15
33	Axially Chiral Cyclic Diphosphine Ligand-Enabled Palladium-Catalyzed Intramolecular Asymmetric Hydroarylation. IScience, 2018, 10, 11-22.	4.1	12
34	Olefination of Alkyl Halides with Aldehydes by Merging Visible-Light Photoredox Catalysis and Organophosphorus Chemistry. IScience, 2018, 6, 102-113.	4.1	11
35	Visible-Light-Induced Decarboxylative lodination of Aromatic Carboxylic Acids. Synlett, 2018, 29, 1572-1577.	1.8	13
36	Merging Photoredox with Copper Catalysis: Decarboxylative Alkynylation of α-Amino Acid Derivatives. Organic Letters, 2017, 19, 1016-1019.	4.6	88

#	Article	IF	CITATIONS
37	Visible-Light Photoredox Difluoromethylation of Phenols and Thiophenols with Commercially Available Difluorobromoacetic Acid. Organic Letters, 2017, 19, 2758-2761.	4.6	39
38	Visible Light as a Sole Requirement for Intramolecular C(sp ³)–H Imination. Organic Letters, 2017, 19, 1994-1997.	4.6	60
39	Roomâ€Temperature Arylation of Thiols: Breakthrough with Aryl Chlorides. Angewandte Chemie - International Edition, 2017, 56, 874-879.	13.8	149
40	Roomâ€Temperature Arylation of Thiols: Breakthrough with Aryl Chlorides. Angewandte Chemie, 2017, 129, 892-897.	2.0	36
41	Visible‣ight Photoredox Decarboxylative Couplings. Asian Journal of Organic Chemistry, 2017, 6, 368-385.	2.7	171
42	Copperâ€Catalyzed Câ^'H Activation of Substituted Pyridines Leading to Imidazopyridine Derivatives via Selfâ€Redox of the Substrates. Asian Journal of Organic Chemistry, 2017, 6, 1551-1555.	2.7	8
43	Visible light photocatalytic decarboxylative monofluoroalkenylation of α-amino acids with gem-difluoroalkenes. Chemical Communications, 2017, 53, 10299-10302.	4.1	85
44	Visible-Light-Mediated Aerobic Oxidation of <i>N</i> -Alkylpyridinium Salts under Organic Photocatalysis. Journal of the American Chemical Society, 2017, 139, 14237-14243.	13.7	87
45	Iridium-Catalyzed Enantioselective Synthesis of Dihydroimidazoquinazolinones by Elaborate Tuning of Chiral Cyclic Ligands. Organic Letters, 2017, 19, 6376-6379.	4.6	17
46	Analysis of inequality in maternal and child health outcomes and mortality from 2000 to 2013 in China. International Journal for Equity in Health, 2017, 16, 66.	3.5	20
47	Chiral Cyclic Ligand-Enabled Iridium-Catalyzed Asymmetric Arylation of Unactivated Racemic Allylic Alcohols with Anilines. Organic Letters, 2017, 19, 3775-3778.	4.6	37
48	Measuring the preference towards patient-centred communication with the Chinese-revised Patient–Practitioner Orientation Scale: a cross-sectional study among physicians and patients in clinical settings in Shanghai, China. BMJ Open, 2017, 7, e016902.	1.9	26
49	Iron-Catalyzed Diastereoselective Synthesis of Unnatural Chiral Amino Acid Derivatives. Organic Letters, 2016, 18, 3362-3365.	4.6	34
50	Thiophenol-Catalyzed Visible-Light Photoredox Decarboxylative Couplings of <i>N</i> -(Acetoxy)phthalimides. Organic Letters, 2016, 18, 6400-6403.	4.6	82
51	Visible-Light Photoredox Synthesis of Chiral α-Selenoamino Acids. Organic Letters, 2016, 18, 1968-1971.	4.6	79
52	Visible-light photoredox synthesis of internal alkynes containing quaternary carbons. Chemical Communications, 2016, 52, 7292-7294.	4.1	70
53	Visible-Light Photoredox Borylation of Aryl Halides and Subsequent Aerobic Oxidative Hydroxylation. Organic Letters, 2016, 18, 5248-5251.	4.6	127
54	Development of Axially Chiral Cycloâ€Biaryldiol Ligands with Adjustable Dihedral Angles. Chemistry - A European Journal, 2016, 22, 17477-17484.	3.3	15

#	Article	IF	CITATIONS
55	An N-(acetoxy)phthalimide motif as a visible-light pro-photosensitizer in photoredox decarboxylative arylthiation. Chemical Communications, 2016, 52, 12909-12912.	4.1	102
56	Iron atalyzed Azidoalkylthiation of Alkenes with Trimethylsilyl Azide and 1â€(Alkylthio)pyrrolidineâ€2,5â€diones. Advanced Synthesis and Catalysis, 2016, 358, 2806-2810.	4.3	21
57	Visible-light photoredox synthesis of unnatural chiral α-amino acids. Scientific Reports, 2016, 6, 26161.	3.3	49
58	Transition metal-free intramolecular regioselective couplings of aliphatic and aromatic C-H bonds. Scientific Reports, 2016, 6, 19931.	3.3	16
59	Installing amino acids and peptides on N-heterocycles under visible-light assistance. Scientific Reports, 2016, 6, 20068.	3.3	70
60	Consecutive visible-light photoredox decarboxylative couplings of adipic acid active esters with alkynyl sulfones leading to cyclic compounds. Chemical Communications, 2016, 52, 8862-8864.	4.1	47
61	Catalystâ€Free Isothiocyanatoalkylthiation of Styrenes with (Alkylthio)pyrrolidineâ€2,5â€diones and Trimethylsilyl Isothiocyanate. Advanced Synthesis and Catalysis, 2016, 358, 1794-1800.	4.3	22
62	Association between social and built environments and leisure-time physical activity among Chinese older adults - a multilevel analysis. BMC Public Health, 2015, 15, 1317.	2.9	66
63	Metalâ€Free Oxidative C–H Amidation of <i>N</i> , <i>N′</i> â€Diarylureas with PhI(OAc) ₂ : Synthesis of Benzimidazolâ€2â€one Derivatives. European Journal of Organic Chemistry, 2015, 2015, 5869-5875.	2.4	26
64	Copperâ€Catalyzed Domino Synthesis of Benzo[4,5]imidazo[1,2â€ <i>a</i>]pyrimidinâ€4(10 <i>H</i>)â€ones u Cyanamide as a Building Block. Advanced Synthesis and Catalysis, 2015, 357, 3961-3968.	using 4.3	5
65	Rhodium atalyzed Hydrosilylation Reaction of <i>N</i> â€Sulfonylâ€1,2,3â€triazoles with Triphenylsilane: Access to Diverse Compounds. European Journal of Organic Chemistry, 2015, 2015, 4471-4480.	2.4	13
66	Rhodium-catalyzed denitrogenative thioacetalization of N-sulfonyl-1,2,3-triazoles with disulfides: an entry to diverse transformation of terminal alkynes. Organic and Biomolecular Chemistry, 2015, 13, 6149-6153.	2.8	19
67	Rhodium atalyzed Desulfination of Sodium Arenesulfinates and Oxidative Annulation with Alkynes. Advanced Synthesis and Catalysis, 2015, 357, 489-499.	4.3	6
68	Arylthiolation of Arylamine Derivatives with (Arylthio)―pyrrolidineâ€2,5â€diones. Advanced Synthesis and Catalysis, 2015, 357, 481-488.	4.3	36
69	Boron-Catalyzed Arylthiooxygenation of N-Allylamides: Synthesis of (Arylsulfanyl)oxazolines. Synlett, 2015, 26, 676-680.	1.8	7
70	Iron-Catalyzed Arylsulfonylation of Activated Alkenes. Synlett, 2015, 26, 688-694.	1.8	20
71	Metal-free oxysulfenylation of alkenes with 1-(arylthio)pyrrolidine-2,5-diones and alcohols. Organic and Biomolecular Chemistry, 2015, 13, 4846-4850.	2.8	32
72	Workplace Social Capital and Mental Health among Chinese Employees: A Multi-Level, Cross-Sectional Study. PLoS ONE, 2014, 9, e85005.	2.5	49

#	Article	IF	CITATIONS
73	Smoke-Free Homes and Home Exposure to Secondhand Smoke in Shanghai, China. International Journal of Environmental Research and Public Health, 2014, 11, 12015-12028.	2.6	22
74	â€~Zhonghua' tobacco advertisement in Shanghai: a descriptive study. Tobacco Control, 2014, 23, 389-394.	3.2	6
75	Metal-Free Iodination of Arylboronic Acids and the Synthesis of Biaryl Derivatives. Synlett, 2014, 25, 995-1000.	1.8	24
76	Copper-Mediated Cascade Synthesis of Diaryl Sulfones via the Sandmeyer Reaction. Synlett, 2014, 25, 847-852.	1.8	14
77	Correlates of Smoke-Free Home Policies in Shanghai, China. BioMed Research International, 2014, 2014, 1-8.	1.9	15
78	Transition Metalâ€Free Trifluoromethylation of <i>N</i> â€Allylamides with Sodium Trifluoromethanesulfinate: Synthesis of Trifluoromethylâ€Containing Oxazolines. Advanced Synthesis and Catalysis, 2014, 356, 3669-3675.	4.3	53
79	Metal-free synthesis of substituted phenols from arylboronic acids in water at room temperature. Chinese Chemical Letters, 2014, 25, 715-719.	9.0	19
80	Metalâ€Free Trifluoromethylation and Arylation of Alkenes: Domino Synthesis of Oxindole Derivatives. Advanced Synthesis and Catalysis, 2014, 356, 1021-1028.	4.3	73
81	Ligand-free hydroboration of alkynes catalyzed by heterogeneous copper powder with high efficiency. Chemical Communications, 2014, 50, 2058-2060.	4.1	88
82	Metal-free UV-Vis-light-induced aerobic oxidative hydroxylation of arylboronic acids in the absence of a photosensitizer. RSC Advances, 2014, 4, 12977.	3.6	23
83	Copper-catalyzed bis-arylations of alkenes leading to oxindole derivatives. Organic and Biomolecular Chemistry, 2014, 12, 4070-4073.	2.8	33
84	Iron or boron-catalyzed C–H arylthiation of substituted phenols at room temperature. Chemical Communications, 2014, 50, 8875-8877.	4.1	76
85	Copper-catalyzed N-arylation and aerobic oxidation: one-pot synthesis of tetrahydroisoquinolino[2,1-a]quinazolinone derivatives. RSC Advances, 2014, 4, 2694-2704.	3.6	26
86	Chinese Tobacco Industry Promotional Activity on the Microblog Weibo. PLoS ONE, 2014, 9, e99336.	2.5	11
87	General and efficient copper-catalyzed aerobic oxidative synthesis of N-fused heterocycles using amino acids as the nitrogen source. RSC Advances, 2013, 3, 15636.	3.6	29
88	Copper atalyzed Aerobic Oxidative CH and CC Functionalization of 1â€{2â€(Arylamino)aryl]ethanones Leading to Acridone Derivatives. Chemistry - A European Journal, 2013, 19, 4271-4277.	3.3	52
89	Easy conjugations between molecules via copper-catalyzed reactions of ortho-aromatic diamines with ketones. Green Chemistry, 2013, 15, 3184.	9.0	10
90	Copperâ€Catalyzed Domino Synthesis of 4â€Oxopyrimido[1,2â€ <i>a</i>]indole Derivatives. Advanced Synthesis and Catalysis, 2013, 355, 2928-2935.	4.3	5

#	Article	IF	CITATIONS
91	Efficient ipso-nitration of arylboronic acids with iron nitrate as the nitro source. RSC Advances, 2013, 3, 25602.	3.6	13
92	Efficient copper-catalyzed domino synthesis of tetrazoloisoquinolines. RSC Advances, 2013, 3, 6278.	3.6	8
93	Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base. Chemical Communications, 2013, 49, 517-519.	4.1	24
94	Palladium atalyzed Synthesis of Aromatic Ketones and Isoindolobenzimidazoles <i>via</i> Selective Aromatic CH Bond Acylation. Advanced Synthesis and Catalysis, 2013, 355, 529-536.	4.3	12
95	Copperâ€Catalyzed Selective Oxidative Acylation of Secondary Anilines with Ethyl Glyoxalate: Domino Synthesis of Indolineâ€2,3â€diones. Advanced Synthesis and Catalysis, 2013, 355, 1169-1176.	4.3	40
96	Copperâ€Catalyzed Câ€Arylation and Denitrogenation of Tetrazoles: Domino Synthesis of 1,3â€Diaminoisoquinoline Derivatives. Advanced Synthesis and Catalysis, 2013, 355, 1177-1184.	4.3	9
97	Copper-catalyzed N-arylation and aerobic oxidative C–H/C–H coupling: one-pot synthesis of indoloimidazoquinoline derivatives. RSC Advances, 2013, 3, 8211.	3.6	19
98	Copper-Catalyzed Sequential N-Arylation and Aerobic Oxidation: Synthesis of Quinazoline Derivatives. Synlett, 2013, 24, 2089-2094.	1.8	18
99	Efficient Synthesis of Dibenzoxaborininols from Diaryl Ethers and Their Application to Dibenzofuran Synthesis. Advanced Synthesis and Catalysis, 2013, 355, 3625-3632.	4.3	24
100	Copper atalyzed Aerobic Oxidative CH Functionalization of Substituted Pyridines: Synthesis of Imidazopyridine Derivatives. Chemistry - A European Journal, 2013, 19, 16804-16808.	3.3	53
101	Copper-Catalyzed Synthesis of 1,2,4-Triazoles via Sequential Coupling and Aerobic Oxidative Dehydrogenation of Amidines. Synlett, 2012, 24, 125-129.	1.8	8
102	Copper-Catalyzed Synthesis of N-Heterocyclic Compounds. Synthesis, 2012, 44, 2805-2824.	2.3	86
103	Copper-catalyzed synthesis of benzocarbazoles via α-C-arylation of ketones. Chemical Communications, 2012, 48, 12210.	4.1	46
104	Copper atalyzed Cascade Synthesis of 1 <i>H</i> â€Indolo[1,2â€ <i>c</i>]quinazoline Derivatives. European Journal of Organic Chemistry, 2012, 2012, 6798-6803.	2.4	23
105	Domino reactions of 1-(2-alkoxyaryl)-3-akylprop-2-yn-1-ones with sodium sulfide leading to thiochromen-4-one derivatives. RSC Advances, 2012, 2, 6549.	3.6	19
106	Concise and efficient one-pot copper-catalyzed synthesis of H-pyrazolo[5,1-a]isoquinolines. RSC Advances, 2012, 2, 8258.	3.6	26
107	Easy and efficient one-pot synthesis of pyrazolo[1,5-c]quinazolines under mild copper-catalyzed conditions. RSC Advances, 2012, 2, 11061.	3.6	27
108	Metal-Free <i>Ortho</i> C–H Borylation of 2-Phenoxypyridines under Mild Conditions. Organic Letters, 2012, 14, 2618-2621.	4.6	90

#	Article	IF	CITATIONS
109	Copper-Catalyzed Aerobic Oxidative Intramolecular C–H Amination Leading to Imidazobenzimidazole Derivatives. Organic Letters, 2012, 14, 452-455.	4.6	98
110	K2CO3-Catalyzed Synthesis of Chromones and 4-Quinolones through the Cleavage of Aromatic C–O Bonds. Organic Letters, 2012, 14, 2710-2713.	4.6	72
111	Functionalizations of Aryl CH Bonds in 2â€Arylpyridines <i>via</i> Sequential Borylation and Copper Catalysis. Advanced Synthesis and Catalysis, 2012, 354, 2211-2217.	4.3	41
112	Copperâ€Catalyzed Domino Synthesis of Isoquinolino[2,3â€ <i>a</i>]quinazolinones. Advanced Synthesis and Catalysis, 2012, 354, 1579-1584.	4.3	24
113	Copperâ€Catalyzed Oneâ€Pot Synthesis of Imidazo/Benzoimidazoquinazolinones by Sequential Ullmannâ€Type Coupling and Intramolecular CH Amidation. Chemistry - A European Journal, 2012, 18, 1180-1186.	3.3	72
114	Copperâ€Catalyzed Domino Synthesis of Benzimidazo[2,1â€ <i>b</i>]quin―azolinâ€12(6 <i>H</i>)â€ones Using Cyanamide as a Building Block. Advanced Synthesis and Catalysis, 2012, 354, 477-482.	⁹ 4.3	52
115	Amino Acids as the Nitrogen-Containing Motifs in Copper-Catalyzed Domino Synthesis of <i>N</i> -Heterocycles. Journal of Organic Chemistry, 2011, 76, 3846-3852.	3.2	141
116	Copper-catalyzed aerobic oxidative synthesis of aromatic carboxylic acids. Chemical Communications, 2011, 47, 2348-2350.	4.1	35
117	Copper-Catalyzed Aerobic Oxidative Intramolecular Alkene C–H Amination Leading toN-Heterocycles. Organic Letters, 2011, 13, 3694-3697.	4.6	77
118	Copper-catalyzed cascade synthesis of benzimidazoquinazoline derivatives under mild condition. Chemical Communications, 2011, 47, 5596-5598.	4.1	51
119	Copper-Catalyzed Cascade Synthesis of Alkyl 6-Aminobenzimidazo[2,1-a]isoquinoline-5-carboxylates. Journal of Organic Chemistry, 2011, 76, 4600-4605.	3.2	36
120	Copper-Catalyzed Domino Synthesis of Quinazolinones via Ullmann-Type Coupling and Aerobic Oxidative Câ^'H Amidation. Organic Letters, 2011, 13, 1274-1277.	4.6	206
121	Copper-catalyzed N-arylation of amines with part-per-million catalyst loadings under air at room temperature. Chemical Communications, 2011, 47, 8976.	4.1	23
122	Transitionâ€Metalâ€Free Intramolecular Ullmannâ€Type Oâ€Arylation: Synthesis of Chromone Derivatives. Angewandte Chemie - International Edition, 2011, 50, 3769-3773.	13.8	99
123	General Copper atalyzed Transformations of Functional Groups from Arylboronic Acids in Water. Chemistry - A European Journal, 2011, 17, 5652-5660.	3.3	241
124	Efficient Copperâ€Catalyzed Synthesis of Polyâ€Nâ€Heterocycles Containing Amino Acid Residues. Chemistry - A European Journal, 2011, 17, 6765-6771.	3.3	25
125	Highly Efficient Copperâ€Catalyzed Synthesis of Internal Alkynes <i>via</i> Aerobic Oxidative Arylation of Terminal Alkynes. Advanced Synthesis and Catalysis, 2010, 352, 458-462.	4.3	30
126	A Simple Copperâ€Catalyzed Cascade Synthesis of 2â€Aminoâ€1 <i>H</i> â€indoleâ€3â€carboxylate Derivatives. Advanced Synthesis and Catalysis, 2010, 352, 1033-1038.	4.3	55

#	Article	IF	CITATIONS
127	A Simple and Practical Copper atalyzed Approach to Substituted Phenols from Aryl Halides by Using Water as the Solvent. Chemistry - A European Journal, 2010, 16, 2366-2370.	3.3	100
128	Efficient copper-catalyzed N-arylations of nitrogen-containing heterocycles and aliphatic amines in water. Green Chemistry, 2010, 12, 1097.	9.0	74
129	Copper-Catalyzed Synthesis of Quinazoline Derivatives via Ullmann-Type Coupling and Aerobic Oxidation. Journal of Organic Chemistry, 2010, 75, 7936-7938.	3.2	126
130	Copper-Catalyzed Direct Amination of Ortho-Functionalized Haloarenes with Sodium Azide as the Amino Source. Journal of Organic Chemistry, 2010, 75, 3311-3316.	3.2	86
131	Concise copper-catalyzed one-pot tandem synthesis of benzimidazo[1,2-b]isoquinolin-11-one derivatives. Chemical Communications, 2010, 46, 4172.	4.1	83
132	Simple and efficient copper-catalyzed cascade synthesis of naphthols containing multifunctional groups under mild conditions. Chemical Communications, 2010, 46, 7617.	4.1	28
133	Simple and Efficient Copper-Catalyzed Approach to 2,4-Disubstituted Imidazolones. Organic Letters, 2010, 12, 3128-3131.	4.6	50
134	Highly Efficient Iron(II) Chloride/ <i>N</i> â€Bromosuccinimideâ€Mediated Synthesis of Imides and Acylsulfonamides. Advanced Synthesis and Catalysis, 2009, 351, 246-252.	4.3	24
135	Efficient Copper atalyzed Synthesis of <i>N</i> â€Alkylanthranilic Acids <i>via</i> an <i>ortho</i> ‧ubstituent Effect of the Carboxyl Group of 2â€Halobenzoic Acids at Room Temperature. Advanced Synthesis and Catalysis, 2009, 351, 1671-1676.	4.3	34
136	Copper atalyzed Synthesis of 1,2,4â€Benzothiadiazine 1,1â€Dioxide Derivatives by Coupling of 2â€Halobenzenesulfonamides with Amidines. Advanced Synthesis and Catalysis, 2009, 351, 1999-2004.	4.3	54
137	A Simple and Efficient Approach to Quinazolinones under Mild Copperâ€Catalyzed Conditions. Angewandte Chemie - International Edition, 2009, 48, 348-351.	13.8	275
138	Easy Copper atalyzed Synthesis of Primary Aromatic Amines by Couplings Aromatic Boronic Acids with Aqueous Ammonia at Room Temperature. Angewandte Chemie - International Edition, 2009, 48, 1114-1116.	13.8	162
139	An Efficient One-Pot Copper-Catalyzed Approach to Isoquinolin-1(2 <i>H</i>)-one Derivatives. Organic Letters, 2009, 11, 2469-2472.	4.6	121
140	Environmentally Friendly Iron-Catalyzed Cascade Synthesis of 1,2,4-Benzothiadiazine 1,1-Dioxide and Quinazolinone Derivatives. ACS Combinatorial Science, 2009, 11, 653-657.	3.3	47
141	Highly Efficient Copperâ€Catalyzed Amidation of Aldehydes by Cĩ£¿H Activation. Chemistry - A European Journal, 2008, 14, 10722-10726.	3.3	99
142	Copper atalyzed Cycloaddition of Sulfonyl Azides with Alkynes to Synthesize <i>N</i> ‧ulfonyltriazoles †on Water' at Room Temperature. Advanced Synthesis and Catalysis, 2008, 350, 1830-1834.	4.3	78
143	Efficient Intermolecular Iron-Catalyzed Amidation of Câ^'H Bonds in the Presence of <i>N</i> -Bromosuccinimide. Organic Letters, 2008, 10, 1863-1866.	4.6	175
144	Highly efficient copper-catalyzed cascade synthesis of quinazoline and quinazolinone derivatives. Chemical Communications, 2008, , 6333.	4.1	184

#	Article	IF	CITATIONS
145	General and Efficient Copper-Catalyzed Amidation of Saturated Câ^'H Bonds Using <i>N</i> -Halosuccinimides as the Oxidants. Journal of Organic Chemistry, 2008, 73, 6207-6212.	3.2	116
146	Quick and highly efficient copper-catalyzed cycloaddition of aliphatic and aryl azides with terminal alkynes "on water― Green Chemistry, 2008, 10, 452.	9.0	82
147	Copper-Catalyzed Synthesis of Benzimidazoles via Cascade Reactions of <i>o</i> -Haloacetanilide Derivatives with Amidine Hydrochlorides. Journal of Organic Chemistry, 2008, 73, 7841-7844.	3.2	141
148	Copper-Catalyzed Coupling of Tertiary Aliphatic Amines with Terminal Alkynes to Propargylamines via Câ°'H Activation. Journal of Organic Chemistry, 2008, 73, 3961-3963.	3.2	118
149	Copper-Catalyzed Synthesis of Primary Arylamines via Cascade Reactions of Aryl Halides with Amidine Hydrochlorides. Journal of Organic Chemistry, 2008, 73, 6864-6866.	3.2	79
150	A Mild and Efficient Method for Copper-Catalyzed Ullmann-Type N-Arylation of Aliphatic Amines and Amino Acids. Synlett, 2007, 2007, 1836-1842.	1.8	71
151	Copper-Catalyzed Amidation of sp3 Câ~'H Bonds Adjacent to a Nitrogen Atom. Organic Letters, 2007, 9, 3813-3816.	4.6	143
152	Copper-catalyzed addition of H-phosphine oxides to alkynes forming alkenylphosphine oxides. Chemical Communications, 2007, , 272-274.	4.1	118
153	CuBr/rac-BINOL-Catalyzed N-Arylations of Aliphatic Amines at Room Temperature. Journal of Organic Chemistry, 2007, 72, 672-674.	3.2	161
154	Sequencing of Lys-containing peptides through phosphonylation modification and electrospray ionization mass spectrometry. International Journal of Mass Spectrometry, 2007, 260, 82-84.	1.5	1
155	A General and Chemoselective Synthesis of Phosphoramidates through Reaction of Silylated Nucleoside Di- and Triphosphates with Silylated Amines Containing Multifunctional Groups. Journal of Organic Chemistry, 2006, 71, 1722-1724.	3.2	2
156	Proline/Pipecolinic Acid-Promoted Copper-CatalyzedP-Arylation. Journal of Organic Chemistry, 2006, 71, 5020-5022.	3.2	150
157	Alkylation reactions of phosphachroman-2,4-diones and 4-hydroxy phosphacoumarins. Bioorganic Chemistry, 2006, 34, 105-113.	4.1	12
158	Analysis of peptide mixtures through convenient isotopic labeling and electrospray ionization-mass spectrometry. International Journal of Mass Spectrometry, 2006, 248, 108-114.	1.5	3
159	Peptide sequencing through N-terminal phosphonylation and multistage electrospray mass spectrometry of sodiated molecules. International Journal of Mass Spectrometry, 2006, 251, 82-84.	1.5	3
160	A picomole-scale method for rapid peptide sequencing through convenient and efficient N-terminal phosphorylation and electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2006, 17, 995-999.	2.8	8
161	A Versatile and Efficient Ligand for Copper-Catalyzed Formation of CN, CO, and PC Bonds: Pyrrolidine-2-Phosphonic Acid Phenyl Monoester. Chemistry - A European Journal, 2006, 12, 3636-3646.	3.3	356
162	Synthesis of Novel Biomimetic Zwitterionic Phosphorylcholine-Bound Chitosan Derivative. Macromolecular Rapid Communications, 2006, 27, 548-552.	3.9	29

#	Article	IF	CITATIONS
163	An Inexpensive and Efficient Copper Catalyst forN-Arylation of Amines, Amides and Nitrogen-Containing Heterocycles. Advanced Synthesis and Catalysis, 2006, 348, 2197-2202.	4.3	150
164	Electrospray ionization mass spectra of phosphacoumarin derivatives. International Journal of Mass Spectrometry, 2005, 245, 41-47.	1.5	3
165	Electrospray ionization mass spectra of dinucleotide N3′→P5′ phosphoramidates. International Journal of Mass Spectrometry, 2005, 246, 49-55.	1.5	4
166	Synthesis of sterically hindered peptide analogs using diphenyl phosphite as the coupling reagent. Bioorganic Chemistry, 2005, 33, 386-392.	4.1	5
167	Copper-Catalyzed Synthesis of Medium- and Large-Sized Nitrogen Heterocycles via N-Arylation of Phosphoramidates and Carbamates. Organic Letters, 2005, 7, 4781-4784.	4.6	74
168	Copper-Catalyzed Arylation of Amines Using Diphenyl Pyrrolidine-2-phosphonate as the New Ligand. Journal of Organic Chemistry, 2005, 70, 8107-8109.	3.2	114
169	Peptide sequencing through N-terminal phosphonylation and electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2005, 40, 772-776.	1.6	12
170	Synthesis of Nucleoside N-Phosphoamino Acids and Peptide Formation. Origins of Life and Evolution of Biospheres, 2005, 35, 11-17.	1.9	6
171	Synthesis and electrospray ionization mass spectra of dinucleotide thiophosphoramidates. Rapid Communications in Mass Spectrometry, 2005, 19, 292-296.	1.5	2
172	Synthesis of a Diverse Series of Phosphacoumarins with Biological Activity. Organic Letters, 2005, 7, 4919-4922.	4.6	80
173	An Efficient Method for Synthesis of 4â€(Phosphonomethyl)benzene Derivatives Under Solventâ€Free Conditions. Synthetic Communications, 2004, 34, 1017-1022.	2.1	1
174	Synthesis and electrospray ionization mass spectra of AZT/d4T boranophosphates. Rapid Communications in Mass Spectrometry, 2004, 18, 273-277.	1.5	5
175	An Efficient Method for Synthesis of 4-(Phosphonomethyl)benzene Derivatives under Solvent-Free Conditions ChemInform, 2004, 35, no.	0.0	0
176	Novel and Convenient Approach to Synthesis of AZT/d4T Hâ€phosphonates. Chinese Journal of Chemistry, 2004, 22, 225-227.	4.9	2
177	A Stepwise one-pot synthesis of arylN-phosphonamidothionate derivatives of nucleosides. Heteroatom Chemistry, 2003, 14, 62-66.	0.7	8
178	Synthesis and hydrolysis of a phenylalanyl adenylate pentacoordinated phosphorane. Bioorganic Chemistry, 2003, 31, 122-128.	4.1	4
179	Novel synthetic method of phosphonamidate peptides and its application in peptide sequencing via multistage mass spectrometry. Chemical Communications, 2003, , 2724.	4.1	8
180	Reaction of ADP with amino acid methyl esters mediated by trimethylsilyl chloride. Chemical Communications, 2003, , 134-135.	4.1	5

#	Article	IF	CITATIONS
181	Synthesis and Resolution of Dinucleotide(TpAZT) Phosphoramidates. Synthetic Communications, 2003, 33, 2553-2562.	2.1	3
182	A Convenient Two-Step One-Pot Synthesis of Alkylthiophosphoramidates Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 641-646.	1.6	4
183	A STEPWISE ONE POT SYNTHESIS OF ALKYL THIOPHOSPHORAMIDATE DERIVATIVES OF NUCLEOSIDES. Synthetic Communications, 2002, 32, 1159-1167.	2.1	8
184	ONE POT SYNTHESIS OF NUCLEOSIDE 5′-THIOPHOSPHORAMIDATES. Synthetic Communications, 2002, 32, 1069-1076.	2.1	7
185	ONE POT SYNTHESIS OF ARYL THIOPHOSPHORAMIDATE DERIVATIVES OF AZT. Synthetic Communications, 2002, 32, 3301-3309.	2.1	3
186	Synthesis and Novel Properties of Alkyl Thiophosphoramidate Derivatives of Nucleosides. Chinese Journal of Chemistry, 2002, 20, 492-496.	4.9	0
187	Studies on Synthesis and Intramolecular Catalyzed Hydrolysis of Thiophosphoramidate Derivatives of Nucleoside. Chinese Journal of Chemistry, 2002, 20, 1434-1438.	4.9	0
188	SYNTHESIS OF N-PHOSPHOPEPTIDES COUPLED BY DICHLOROTRIPHENYLPHOSPHORANE. Synthetic Communications, 2001, 31, 2067-2075.	2.1	4
189	Rearrangement with formamide extrusion in the electrospray mass spectra of aminoacylbenzylamines. Rapid Communications in Mass Spectrometry, 2001, 15, 1489-1493.	1.5	12
190	Rearrangement of P-N to P-O bonds in mass spectra ofN-diisopropyloxyphosphoryl amino acids/alcohols. Rapid Communications in Mass Spectrometry, 2001, 15, 1936-1940.	1.5	20
191	Synthesis and Electrospray Ionization Mass Spectra of Amino Acid Thiophosphoramidates of Nucleoside. Chinese Journal of Chemistry, 2001, 19, 1239-1244.	4.9	4
192	Identification of self-assembly products fromN-phosphoamino acids by electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2000, 14, 1491-1493.	1.5	22
193	Electrospray ionization mass spectra of amino acid phosphoramidates of adenosine. Rapid Communications in Mass Spectrometry, 2000, 14, 1813-1822.	1.5	14
194	Synthesis of Novel Nα, Nγ-Lysine Linked Dinucleotides. Synthetic Communications, 2000, 30, 3141-3151.	2.1	4
195	Identification of selfâ€assembly products from Nâ€phosphoamino acids by electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2000, 14, 1491-1493.	1.5	1
196	₃₁ P NMR Spectral Evidence for the Hexacoordinated Phosphorus Intermediates in the Reaction of Oxyphosphorochloridate With Amino Acids. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 147, 215-215.	1.6	3
197	Mass spectra of aminoacyl adenylate pentacoordinated phosphorus compounds. , 1999, 13, 1477-1479.		4
198	Oligomerization ofN,O-Bis(trimethylsilyl)-α-amino Acids into Peptides Mediated byo-Phenylene Phosphorochloridate. Journal of the American Chemical Society, 1999, 121, 291-295.	13.7	83

#	Article	IF	CITATIONS
199	Self-assembly of N,O-bis(trimethylsilyl)amino acids to peptides mediated byo-phenylene phosphorochloridate identified by fast atom bombardment mass spectrometry. Rapid Communications in Mass Spectrometry, 1998, 12, 94-96.	1.5	1
200	Direct Thiophosphorylation of Amino Acids and Peptides. Synthetic Communications, 1998, 28, 1727-1736.	2.1	3
201	Novel ions of quaternary ammonium halides in FDMS. Science in China Series B: Chemistry, 1997, 40, 575-582.	0.8	1
202	Fast Atom Bombardment Mass Spectra ofN-Phosphorylated Peptide Analogs. Journal of Mass Spectrometry, 1997, 32, 813-819.	1.6	1
203	Mass spectra of pentacoordinate spirobicyclic imino(alkyl)acetoxyphosphoranes. Rapid Communications in Mass Spectrometry, 1997, 11, 1825-1828.	1.5	7
204	C-H amination in the synthesis of N-heterocycles. Reports in Organic Chemistry, 0, , 1.	1.0	1