Richard G Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10766590/publications.pdf

Version: 2024-02-01

86 papers

5,948 citations

57758 44 h-index 76900 74 g-index

89 all docs 89 docs citations

89 times ranked 5090 citing authors

#	Article	IF	CITATIONS
1	Consequences of coupled barriers to gene flow for the buildâ€up of genomic differentiation. Evolution; International Journal of Organic Evolution, 2022, 76, 985-1002.	2.3	9
2	Unraveling hierarchical genetic structure in a marine metapopulation: A comparison of three highâ€throughput genotyping approaches. Molecular Ecology, 2020, 29, 2189-2203.	3.9	26
3	Genomic Basis of Circannual Rhythm in the European Corn Borer Moth. Current Biology, 2019, 29, 3501-3509.e5.	3.9	69
4	Genes Integral to the Reproductive Function of Male Reproductive Tissues Drive Heterogeneity in Evolutionary Rates in Japanese Quail. G3: Genes, Genomes, Genetics, 2018, 8, 39-51.	1.8	6
5	A flicker of hope: Genomic data distinguish Northern Flicker taxa despite low levels of divergence. Auk, 2018, 135, 748-766.	1.4	27
6	A combination of sexual and ecological divergence contributes to rearrangement spread during initial stages of speciation. Molecular Ecology, 2017, 26, 2331-2347.	3.9	28
7	Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Molecular Ecology, 2016, 25, 2454-2466.	3.9	183
8	Genes with Restricted Introgression in a Field Cricket (<i>Gryllus firmus/Gryllus pennsylvanicus</i> Hybrid Zone Are Concentrated on the X Chromosome and a Single Autosome. G3: Genes, Genomes, Genetics, 2015, 5, 2219-2227.	1.8	25
9	Hybrid zones: windows on climate change. Trends in Ecology and Evolution, 2015, 30, 398-406.	8.7	178
10	Genetic structure, admixture and invasion success in a Holarctic defoliator, the gypsy moth (<i>Lymantria dispar</i> , Lepidoptera: Erebidae). Molecular Ecology, 2015, 24, 1275-1291.	3.9	47
11	Patterns, causes, and consequences of marine larval dispersal. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13940-13945.	7.1	134
12	Genetics Reveal the Origin and Timing of a Cryptic Insular Introduction of Muskrats in North America. PLoS ONE, 2014, 9, e111856.	2.5	3
13	Hybridization, Introgression, and the Nature of Species Boundaries. Journal of Heredity, 2014, 105 Suppl 1, 795-809.	2.4	595
14	Reproductive Success and Body Size in the Cricket Gryllus firmus. Journal of Insect Behavior, 2014, 27, 346-356.	0.7	11
15	Gene flow and the maintenance of species boundaries. Molecular Ecology, 2014, 23, 1668-1678.	3.9	100
16	Selective Constraint Dominates the Evolution of Genes Expressed in a Novel Reproductive Gland. Molecular Biology and Evolution, 2014, 31, 3266-3281.	8.9	12
17	A Comparison of Next Generation Sequencing Technologies for Transcriptome Assembly and Utility for RNA-Seq in a Non-Model Bird. PLoS ONE, 2014, 9, e108550.	2.5	34
18	DIFFERENTIAL INTROGRESSION IN A MOSAIC HYBRID ZONE REVEALS CANDIDATE BARRIER GENES. Evolution; International Journal of Organic Evolution, 2013, 67, 3653-3661.	2.3	55

#	Article	IF	CITATIONS
19	Patterns of Transcriptome Divergence in the Male Accessory Gland of Two Closely Related Species of Field Crickets. Genetics, 2013, 193, 501-513.	2.9	49
20	Structure of a mosaic hybrid zone between the field crickets <i>Gryllus firmus</i> and <i>G. pennsylvanicus</i> . Ecology and Evolution, 2013, 3, 985-1002.	1.9	27
21	THE LANGUAGE OF SPECIATION. Evolution; International Journal of Organic Evolution, 2012, 66, 3643-3657.	2.3	102
22	Influence of the Male Ejaculate on Post-Mating Prezygotic Barriers in Field Crickets. PLoS ONE, 2012, 7, e46202.	2.5	21
23	GENE GENEALOGIES REVEAL DIFFERENTIATION AT SEX PHEROMONE OLFACTORY RECEPTOR LOCI IN PHEROMONE STRAINS OF THE EUROPEAN CORN BORER, <i> OSTRINIA NUBILALIS </i>)i > Evolution; International Journal of Organic Evolution, 2011, 65, 1583-1593.	2.3	20
24	DECOUPLING OF RAPID AND ADAPTIVE EVOLUTION AMONG SEMINAL FLUID PROTEINS IN HELICONIUS BUTTERFLIES WITH DIVERGENT MATING SYSTEMS. Evolution; International Journal of Organic Evolution, 2011, 65, 2855-2871.	2.3	35
25	INTROGRESSION DESPITE SUBSTANTIAL DIVERGENCE IN A BROADCAST SPAWNING MARINE INVERTEBRATE. Evolution; International Journal of Organic Evolution, 2011, 65, 429-442.	2.3	58
26	Reproductive protein evolution in two cryptic species of marine chordate. BMC Evolutionary Biology, 2011, 11, 18.	3.2	16
27	A \hat{l} "11 desaturase gene genealogy reveals two divergent allelic classes within the European corn borer (Ostrinia nubilalis). BMC Evolutionary Biology, 2010, 10, 112.	3.2	6
28	Polymorphism and divergence within the ascidian genus Ciona. Molecular Phylogenetics and Evolution, 2010, 56, 718-726.	2.7	76
29	Lateral Phage Transfer in Obligate Intracellular Bacteria (Wolbachia): Verification from Natural Populations. Molecular Biology and Evolution, 2010, 27, 501-505.	8.9	63
30	Combined EST and Proteomic Analysis Identifies Rapidly Evolving Seminal Fluid Proteins in Heliconius Butterflies. Molecular Biology and Evolution, 2010, 27, 2000-2013.	8.9	83
31	Analysis of genetic diversity in an invasive population of Asian long-horned beetles in Ontario, Canada. Canadian Entomologist, 2009, 141, 582-594.	0.8	24
32	Patterns of Genetic Variation Among Populations of the Asian Longhorned Beetle (Coleoptera:) Tj ETQq0 0 0 rgB1	Oyerlock	R 10 Tf 50 22
33	GENEALOGICAL DISCORDANCE AND PATTERNS OF INTROGRESSION AND SELECTION ACROSS A CRICKET HYBRID ZONE. Evolution; International Journal of Organic Evolution, 2009, 63, 2999-3015.	2.3	57
34	Do Wolbachia infections play a role in unidirectional incompatibilities in a field cricket hybrid zone?. Molecular Ecology, 2008, 10, 703-709.	3.9	20
35	HYBRID ZONE ORIGINS, SPECIES BOUNDARIES, AND THE EVOLUTION OF WING-PATTERN DIVERSITY IN A POLYTYPIC SPECIES COMPLEX OF NORTH AMERICAN ADMIRAL BUTTERFLIES (NYMPHALIDAE: LIMENITIS). Evolution; International Journal of Organic Evolution, 2008, 62, 1400-1417.	2.3	46
36	EST analysis of male accessory glands from Heliconius butterflies with divergent mating systems. BMC Genomics, 2008, 9, 592.	2.8	33

#	Article	IF	Citations
37	Searching for candidate speciation genes using a proteomic approach: seminal proteins in field crickets. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1975-1983.	2.6	72
38	Molecular Differentiation at Nuclear Loci in French Host Races of the European Corn Borer (<i>Ostrinia nubilalis</i>). Genetics, 2007, 176, 2343-2355.	2.9	45
39	Phylogeography of spruce beetles (Dendroctonus rufipennis Kirby) (Curculionidae: Scolytinae) in North America. Molecular Ecology, 2007, 16, 2560-2573.	3.9	56
40	Microsatellites in the striped ground crickets, Allonemobius (Orthoptera: Gryllidae). Molecular Ecology Notes, 2007, 7, 1094-1096.	1.7	0
41	Genealogical relationships within and among shallow-water Ciona species (Ascidiacea). Marine Biology, 2007, 151, 1839-1847.	1.5	88
42	Viability selection on overwintering eggs in a field cricket mosaic hybrid zone. Oikos, 2006, 115, 53-68.	2.7	13
43	Identification and comparative analysis of accessory gland proteins in Orthoptera. Genome, 2006, 49, 1069-1080.	2.0	89
44	Two multiplex sets of eight and five microsatellite markers for the European corn borer, Ostrinia nubilalis Hubner (Lepidoptera: Crambidae). Molecular Ecology Notes, 2006, 6, 945-947.	1.7	16
45	Molecular Evolution of Seminal Proteins in Field Crickets. Molecular Biology and Evolution, 2006, 23, 1574-1584.	8.9	117
46	Consequences of reproductive barriers for genealogical discordance in the European corn borer. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14706-14711.	7.1	143
47	Genetic Mapping of Sexual Isolation Between E and Z Pheromone Strains of the European Corn Borer (Ostrinia nubilalis). Genetics, 2004, 167, 301-309.	2.9	98
48	Phylogeny and Evolutionary History of the Ground Squirrels (Rodentia: Marmotinae). Journal of Mammalian Evolution, 2003, 10, 249-276.	1.8	129
49	Nuclear Gene Genealogies Reveal Historical, Demographic and Selective Factors Associated With Speciation in Field Crickets. Genetics, 2003, 163, 1389-1401.	2.9	87
50	A FINE-SCALE SPATIAL ANALYSIS OF THE MOSAIC HYBRID ZONE BETWEEN GRYLLUS FIRMUS AND GRYLLUS PENNSYLVANICUS. Evolution; International Journal of Organic Evolution, 2002, 56, 2296-2312.	2.3	95
51	Isolation and characterization of microsatellites in Aphidius ervi (Hymenoptera: Braconidae) and their applicability to related species. Molecular Ecology Notes, 2001, 1, 197-199.	1.7	14
52	Pheromone binding proteins in the European and Asian corn borers: no protein change associated with pheromone differences. Insect Biochemistry and Molecular Biology, 1999, 29, 277-284.	2.7	52
53	Insights Into Genome Differentiation: Pheromone-Binding Protein Variation and Population History in the European Corn Borer (Ostrinia nubilalis). Genetics, 1999, 153, 1743-1751.	2.9	29
54	PATTERNS OF VARIATION AND LINKAGE DISEQUILIBRIUM IN A FIELD CRICKET HYBRID ZONE. Evolution; International Journal of Organic Evolution, 1997, 51, 493-505.	2.3	124

#	Article	IF	Citations
55	Patterns of Variation and Linkage Disequilibrium in a Field Cricket Hybrid Zone. Evolution; International Journal of Organic Evolution, 1997, 51, 493.	2.3	58
56	Inferences about the origin of a field cricket hybrid zone from a mitochondrial DNA phylogeny. Heredity, 1997, 79, 484-494.	2.6	39
57	Inferences about the origin of a field cricket hybrid zone from a mitochondrial DNA phylogeny. Heredity, 1997, 79, 484-494.	2.6	4
58	Balancing Selection on Electrophoretic Variation of Phosphoglucose Isomerase in Two Species of Field Cricket: <i>Gryllus veletis</i> and <i>G. pennsylvanicus</i> Genetics, 1997, 147, 609-621.	2.9	48
59	SPATIAL POPULATION STRUCTURE IN THE WHIRLIGIG BEETLE <i>DINEUTUS ASSIMILIS:</i> INFERENCES BASED ON MITOCHONDRIAL DNA AND FIELD DATA. Evolution; International Journal of Organic Evolution, 1995, 49, 266-275.	2.3	36
60	Mitochondrial DNA phylogeny of North American field crickets: perspectives on the evolution of life cycles, songs, and habitat associations. Journal of Evolutionary Biology, 1995, 8, 209-232.	1.7	56
61	Spatial Population Structure in the Whirligig Beetle Dineutus assimilis: Evolutionary Inferences Based on Mitochondrial DNA and Field Data. Evolution; International Journal of Organic Evolution, 1995, 49, 266.	2.3	15
62	MITOCHONDRIAL DNA VARIATION WITHIN AND BETWEEN SPECIES OF THE <i>PAPILIO MACHAON</i> GROUP OF SWALLOWTAIL BUTTERFLIES. Evolution; International Journal of Organic Evolution, 1994, 48, 408-422.	2.3	77
63	Variation in Mitochondrial DNA and the Biogeographic History of Woodrats (Neotoma) of the Eastern United States. Systematic Biology, 1992, 41, 331.	5.6	17
64	Variation in Mitochondrial DNA and the Biogeographic History of Woodrats (Neotoma) of the Eastern United States. Systematic Biology, 1992, 41, 331-344.	5.6	88
65	Redwoods break the rules. Nature, 1990, 344, 295-296.	27.8	22
66	Ecological Genetics of a Mosaic Hybrid Zone: Mitochondrial, Nuclear, and Reproductive Differentiation of Crickets by Soil Type. Evolution; International Journal of Organic Evolution, 1989, 43, 432.	2.3	110
67	Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends in Ecology and Evolution, 1989, 4, 6-11.	8.7	535
68	ECOLOGICAL GENETICS OF A MOSAIC HYBRID ZONE: MITOCHONDRIAL, NUCLEAR, AND REPRODUCTIVE DIFFERENTIATION OF CRICKETS BY SOIL TYPE. Evolution; International Journal of Organic Evolution, 1989, 43, 432-449.	2.3	220
69	HYBRIDIZATION IN WESTERN ATLANTIC STONE CRABS (GENUS <i>MENIPPE</i>): EVOLUTIONARY HISTORY AND ECOLOGICAL CONTEXT INFLUENCE SPECIES INTERACTIONS. Evolution; International Journal of Organic Evolution, 1988, 42, 528-544.	2.3	82
70	Pattern and process in a narrow hybrid zone. Heredity, 1986, 56, 337-349.	2.6	245
71	MITOCHONDRIAL DNA TRANSMISSION GENETICS IN CRICKETS. Genetics, 1986, 114, 955-970.	2.9	136
72	BARRIERS TO GENE EXCHANGE BETWEEN CLOSELY RELATED CRICKET SPECIES. II. LIFE CYCLE VARIATION AND TEMPORAL ISOLATION. Evolution; International Journal of Organic Evolution, 1985, 39, 244-259.	2.3	68

#	Article	lF	CITATIONS
73	Barriers to Gene Exchange Between Closely Related Cricket Species. II. Life Cycle Variation and Temporal Isolation. Evolution; International Journal of Organic Evolution, 1985, 39, 244.	2.3	22
74	Habitat Segregation in Ground Crickets: Experimental Studies of Adult Survival, Reproductive Success, and Oviposition Preference. Ecology, 1984, 65, 61-68.	3.2	25
75	Habitat Segregation in Ground Crickets: The Role of Interspecific Competition and Habitat Selection. Ecology, 1984, 65, 69-76.	3.2	35
76	TheNotch locus of Drosophila melanogaster: A molecular analysis. Genesis, 1983, 4, 233-254.	2.1	14
77	Barriers to Gene Exchange Between Closely Related Cricket Species. I. Laboratory Hybridization Studies. Evolution; International Journal of Organic Evolution, 1983, 37, 245.	2.3	33
78	Patterns of Genetic Variation within and among Gypsy Moth, Lymantria dispar (Lepidoptera:) Tj ETQq0 0 0 rgBT	/Overlock 2.5	10 Tf 50 542
79	BARRIERS TO GENE EXCHANGE BETWEEN CLOSELY RELATED CRICKET SPECIES. I. LABORATORY HYBRIDIZATION STUDIES. Evolution; International Journal of Organic Evolution, 1983, 37, 245-251.	2.3	64
80	A Narrow Hybrid Zone Between Closely Related Cricket Species. Evolution; International Journal of Organic Evolution, 1982, 36, 535.	2.3	28
81	A NARROW HYBRID ZONE BETWEEN CLOSELY RELATED CRICKET SPECIES. Evolution; International Journal of Organic Evolution, 1982, 36, 535-552.	2.3	68
82	Return of the Hopeful Monster? - The Material Basis of Evolution.Richard B. Goldschmidt, with an introduction by Stephen J. Gould. Yale University Press; New Haven. 1982. (Reprint of 1940 edition.) xlii + 436 pp. \$12.95 (paperback) Paleobiology, 1982, 8, 459-463.	2.0	2
83	SPECIATION IN NORTH AMERICAN FIELD CRICKETS: EVIDENCE FROM ELECTROPHORETIC COMPARISONS. Evolution; International Journal of Organic Evolution, 1979, 33, 1009-1023.	2.3	60
84	Allozyme Differentiation between Pheromone Strains of the European Corn Borer, Ostrinia nubilalis1,2. Annals of the Entomological Society of America, 1977, 70, 717-720.	2.5	56
85	Parallel variation at an enzyme locus in sibling species of field crickets. Nature, 1977, 266, 168-170.	27.8	31
86	Multiple barriers to gene exchange in a field cricket hybrid zone. Biological Journal of the Linnean Society, 0, 97, 390-402.	1.6	29