Richard G Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10766590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybridization, Introgression, and the Nature of Species Boundaries. Journal of Heredity, 2014, 105 Suppl 1, 795-809.	2.4	595
2	Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends in Ecology and Evolution, 1989, 4, 6-11.	8.7	535
3	Pattern and process in a narrow hybrid zone. Heredity, 1986, 56, 337-349.	2.6	245
4	ECOLOGICAL GENETICS OF A MOSAIC HYBRID ZONE: MITOCHONDRIAL, NUCLEAR, AND REPRODUCTIVE DIFFERENTIATION OF CRICKETS BY SOIL TYPE. Evolution; International Journal of Organic Evolution, 1989, 43, 432-449.	2.3	220
5	Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Molecular Ecology, 2016, 25, 2454-2466.	3.9	183
6	Hybrid zones: windows on climate change. Trends in Ecology and Evolution, 2015, 30, 398-406.	8.7	178
7	Consequences of reproductive barriers for genealogical discordance in the European corn borer. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14706-14711.	7.1	143
8	MITOCHONDRIAL DNA TRANSMISSION GENETICS IN CRICKETS. Genetics, 1986, 114, 955-970.	2.9	136
9	Patterns, causes, and consequences of marine larval dispersal. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13940-13945.	7.1	134
10	Phylogeny and Evolutionary History of the Ground Squirrels (Rodentia: Marmotinae). Journal of Mammalian Evolution, 2003, 10, 249-276.	1.8	129
11	PATTERNS OF VARIATION AND LINKAGE DISEQUILIBRIUM IN A FIELD CRICKET HYBRID ZONE. Evolution; International Journal of Organic Evolution, 1997, 51, 493-505.	2.3	124
12	Molecular Evolution of Seminal Proteins in Field Crickets. Molecular Biology and Evolution, 2006, 23, 1574-1584.	8.9	117
13	Ecological Genetics of a Mosaic Hybrid Zone: Mitochondrial, Nuclear, and Reproductive Differentiation of Crickets by Soil Type. Evolution; International Journal of Organic Evolution, 1989, 43, 432.	2.3	110
14	THE LANGUAGE OF SPECIATION. Evolution; International Journal of Organic Evolution, 2012, 66, 3643-3657.	2.3	102
15	Gene flow and the maintenance of species boundaries. Molecular Ecology, 2014, 23, 1668-1678.	3.9	100
16	Genetic Mapping of Sexual Isolation Between E and Z Pheromone Strains of the European Corn Borer (Ostrinia nubilalis). Genetics, 2004, 167, 301-309.	2.9	98
17	A FINE-SCALE SPATIAL ANALYSIS OF THE MOSAIC HYBRID ZONE BETWEEN GRYLLUS FIRMUS AND GRYLLUS PENNSYLVANICUS. Evolution; International Journal of Organic Evolution, 2002, 56, 2296-2312.	2.3	95
18	Identification and comparative analysis of accessory gland proteins in Orthoptera. Genome, 2006, 49, 1069-1080.	2.0	89

#	Article	IF	CITATIONS
19	Variation in Mitochondrial DNA and the Biogeographic History of Woodrats (Neotoma) of the Eastern United States. Systematic Biology, 1992, 41, 331-344.	5.6	88
20	Genealogical relationships within and among shallow-water Ciona species (Ascidiacea). Marine Biology, 2007, 151, 1839-1847.	1.5	88
21	Nuclear Gene Genealogies Reveal Historical, Demographic and Selective Factors Associated With Speciation in Field Crickets. Genetics, 2003, 163, 1389-1401.	2.9	87
22	Combined EST and Proteomic Analysis Identifies Rapidly Evolving Seminal Fluid Proteins in Heliconius Butterflies. Molecular Biology and Evolution, 2010, 27, 2000-2013.	8.9	83
23	HYBRIDIZATION IN WESTERN ATLANTIC STONE CRABS (GENUS <i>MENIPPE</i>): EVOLUTIONARY HISTORY AND ECOLOGICAL CONTEXT INFLUENCE SPECIES INTERACTIONS. Evolution; International Journal of Organic Evolution, 1988, 42, 528-544.	2.3	82
24	MITOCHONDRIAL DNA VARIATION WITHIN AND BETWEEN SPECIES OF THE <i>PAPILIO MACHAON</i> GROUP OF SWALLOWTAIL BUTTERFLIES. Evolution; International Journal of Organic Evolution, 1994, 48, 408-422.	2.3	77
25	Polymorphism and divergence within the ascidian genus Ciona. Molecular Phylogenetics and Evolution, 2010, 56, 718-726.	2.7	76
26	Searching for candidate speciation genes using a proteomic approach: seminal proteins in field crickets. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1975-1983.	2.6	72
27	Genomic Basis of Circannual Rhythm in the European Corn Borer Moth. Current Biology, 2019, 29, 3501-3509.e5.	3.9	69
28	A NARROW HYBRID ZONE BETWEEN CLOSELY RELATED CRICKET SPECIES. Evolution; International Journal of Organic Evolution, 1982, 36, 535-552.	2.3	68
29	BARRIERS TO GENE EXCHANGE BETWEEN CLOSELY RELATED CRICKET SPECIES. II. LIFE CYCLE VARIATION AND TEMPORAL ISOLATION. Evolution; International Journal of Organic Evolution, 1985, 39, 244-259.	2.3	68
30	BARRIERS TO GENE EXCHANGE BETWEEN CLOSELY RELATED CRICKET SPECIES. I. LABORATORY HYBRIDIZATION STUDIES. Evolution; International Journal of Organic Evolution, 1983, 37, 245-251.	2.3	64
31	Lateral Phage Transfer in Obligate Intracellular Bacteria (Wolbachia): Verification from Natural Populations. Molecular Biology and Evolution, 2010, 27, 501-505.	8.9	63
32	SPECIATION IN NORTH AMERICAN FIELD CRICKETS: EVIDENCE FROM ELECTROPHORETIC COMPARISONS. Evolution; International Journal of Organic Evolution, 1979, 33, 1009-1023.	2.3	60
33	Patterns of Genetic Variation within and among Gypsy Moth, Lymantria dispar (Lepidoptera:) Tj ETQq1 1 0.7843	14 _{.2} gBT /C	overlock 10 Ti
34	Patterns of Variation and Linkage Disequilibrium in a Field Cricket Hybrid Zone. Evolution; International Journal of Organic Evolution, 1997, 51, 493.	2.3	58
35	INTROGRESSION DESPITE SUBSTANTIAL DIVERGENCE IN A BROADCAST SPAWNING MARINE INVERTEBRATE. Evolution; International Journal of Organic Evolution, 2011, 65, 429-442.	2.3	58
36	GENEALOGICAL DISCORDANCE AND PATTERNS OF INTROGRESSION AND SELECTION ACROSS A CRICKET HYBRID ZONE. Evolution; International Journal of Organic Evolution, 2009, 63, 2999-3015.	2.3	57

#	Article	IF	CITATIONS
37	Allozyme Differentiation between Pheromone Strains of the European Corn Borer, Ostrinia nubilalis1,2. Annals of the Entomological Society of America, 1977, 70, 717-720.	2.5	56
38	Mitochondrial DNA phylogeny of North American field crickets: perspectives on the evolution of life cycles, songs, and habitat associations. Journal of Evolutionary Biology, 1995, 8, 209-232.	1.7	56
39	Phylogeography of spruce beetles (Dendroctonus rufipennis Kirby) (Curculionidae: Scolytinae) in North America. Molecular Ecology, 2007, 16, 2560-2573.	3.9	56
40	DIFFERENTIAL INTROGRESSION IN A MOSAIC HYBRID ZONE REVEALS CANDIDATE BARRIER GENES. Evolution; International Journal of Organic Evolution, 2013, 67, 3653-3661.	2.3	55
41	Pheromone binding proteins in the European and Asian corn borers: no protein change associated with pheromone differences. Insect Biochemistry and Molecular Biology, 1999, 29, 277-284.	2.7	52
42	Patterns of Transcriptome Divergence in the Male Accessory Gland of Two Closely Related Species of Field Crickets. Genetics, 2013, 193, 501-513.	2.9	49
43	Balancing Selection on Electrophoretic Variation of Phosphoglucose Isomerase in Two Species of Field Cricket: <i>Gryllus veletis</i> and <i>G. pennsylvanicus</i> . Genetics, 1997, 147, 609-621.	2.9	48
44	Genetic structure, admixture and invasion success in a Holarctic defoliator, the gypsy moth (<i>Lymantria dispar</i> , Lepidoptera: Erebidae). Molecular Ecology, 2015, 24, 1275-1291.	3.9	47
45	HYBRID ZONE ORIGINS, SPECIES BOUNDARIES, AND THE EVOLUTION OF WING-PATTERN DIVERSITY IN A POLYTYPIC SPECIES COMPLEX OF NORTH AMERICAN ADMIRAL BUTTERFLIES (NYMPHALIDAE: LIMENITIS). Evolution; International Journal of Organic Evolution, 2008, 62, 1400-1417.	2.3	46
46	Molecular Differentiation at Nuclear Loci in French Host Races of the European Corn Borer (<i>Ostrinia nubilalis</i>). Genetics, 2007, 176, 2343-2355.	2.9	45
47	Inferences about the origin of a field cricket hybrid zone from a mitochondrial DNA phylogeny. Heredity, 1997, 79, 484-494.	2.6	39
48	SPATIAL POPULATION STRUCTURE IN THE WHIRLIGIG BEETLE <i>DINEUTUS ASSIMILIS:</i> EVOLUTIONARY INFERENCES BASED ON MITOCHONDRIAL DNA AND FIELD DATA. Evolution; International Journal of Organic Evolution, 1995, 49, 266-275.	2.3	36
49	Habitat Segregation in Ground Crickets: The Role of Interspecific Competition and Habitat Selection. Ecology, 1984, 65, 69-76.	3.2	35
50	DECOUPLING OF RAPID AND ADAPTIVE EVOLUTION AMONG SEMINAL FLUID PROTEINS IN HELICONIUS BUTTERFLIES WITH DIVERGENT MATING SYSTEMS. Evolution; International Journal of Organic Evolution, 2011, 65, 2855-2871.	2.3	35
51	A Comparison of Next Generation Sequencing Technologies for Transcriptome Assembly and Utility for RNA-Seq in a Non-Model Bird. PLoS ONE, 2014, 9, e108550.	2.5	34
52	Barriers to Gene Exchange Between Closely Related Cricket Species. I. Laboratory Hybridization Studies. Evolution; International Journal of Organic Evolution, 1983, 37, 245.	2.3	33
53	EST analysis of male accessory glands from Heliconius butterflies with divergent mating systems. BMC Genomics, 2008, 9, 592.	2.8	33
54	Parallel variation at an enzyme locus in sibling species of field crickets. Nature, 1977, 266, 168-170.	27.8	31

16

#	Article	IF	CITATIONS
55	Multiple barriers to gene exchange in a field cricket hybrid zone. Biological Journal of the Linnean Society, 0, 97, 390-402.	1.6	29
56	Insights Into Genome Differentiation: Pheromone-Binding Protein Variation and Population History in the European Corn Borer (Ostrinia nubilalis). Genetics, 1999, 153, 1743-1751.	2.9	29
57	A Narrow Hybrid Zone Between Closely Related Cricket Species. Evolution; International Journal of Organic Evolution, 1982, 36, 535.	2.3	28
58	A combination of sexual and ecological divergence contributes to rearrangement spread during initial stages of speciation. Molecular Ecology, 2017, 26, 2331-2347.	3.9	28
59	Structure of a mosaic hybrid zone between the field crickets <i>Gryllus firmus</i> and <i>G. pennsylvanicus</i> . Ecology and Evolution, 2013, 3, 985-1002.	1.9	27
60	A flicker of hope: Genomic data distinguish Northern Flicker taxa despite low levels of divergence. Auk, 2018, 135, 748-766.	1.4	27
61	Unraveling hierarchical genetic structure in a marine metapopulation: A comparison of three highâ€throughput genotyping approaches. Molecular Ecology, 2020, 29, 2189-2203.	3.9	26
62	Habitat Segregation in Ground Crickets: Experimental Studies of Adult Survival, Reproductive Success, and Oviposition Preference. Ecology, 1984, 65, 61-68.	3.2	25
63	Genes with Restricted Introgression in a Field Cricket (<i>Gryllus firmus/Gryllus pennsylvanicus</i>) Hybrid Zone Are Concentrated on the X Chromosome and a Single Autosome. G3: Genes, Genomes, Genetics, 2015, 5, 2219-2227.	1.8	25
64	Analysis of genetic diversity in an invasive population of Asian long-horned beetles in Ontario, Canada. Canadian Entomologist, 2009, 141, 582-594.	0.8	24
65	Barriers to Gene Exchange Between Closely Related Cricket Species. II. Life Cycle Variation and Temporal Isolation. Evolution; International Journal of Organic Evolution, 1985, 39, 244.	2.3	22
66	Redwoods break the rules. Nature, 1990, 344, 295-296.	27.8	22
67	Influence of the Male Ejaculate on Post-Mating Prezygotic Barriers in Field Crickets. PLoS ONE, 2012, 7, e46202.	2.5	21
68	Do Wolbachia infections play a role in unidirectional incompatibilities in a field cricket hybrid zone?. Molecular Ecology, 2008, 10, 703-709.	3.9	20
69	GENE GENEALOGIES REVEAL DIFFERENTIATION AT SEX PHEROMONE OLFACTORY RECEPTOR LOCI IN PHEROMONE STRAINS OF THE EUROPEAN CORN BORER, <i>OSTRINIA NUBILALIS </i> . Evolution; International Journal of Organic Evolution, 2011, 65, 1583-1593.	2.3	20
70	Patterns of Genetic Variation Among Populations of the Asian Longhorned Beetle (Coleoptera:) Tj ETQq0 0 0 rg	BT /Overloo 2.5	ck 10 Tf 50 1
71	Variation in Mitochondrial DNA and the Biogeographic History of Woodrats (Neotoma) of the Eastern United States. Systematic Biology, 1992, 41, 331.	5.6	17

Two multiplex sets of eight and five microsatellite markers for the European corn borer, Ostrinia nubilalis Hubner (Lepidoptera: Crambidae). Molecular Ecology Notes, 2006, 6, 945-947.

#	Article	IF	CITATIONS
73	Reproductive protein evolution in two cryptic species of marine chordate. BMC Evolutionary Biology, 2011, 11, 18.	3.2	16
74	Spatial Population Structure in the Whirligig Beetle Dineutus assimilis: Evolutionary Inferences Based on Mitochondrial DNA and Field Data. Evolution; International Journal of Organic Evolution, 1995, 49, 266.	2.3	15
75	TheNotch locus of Drosophila melanogaster: A molecular analysis. Genesis, 1983, 4, 233-254.	2.1	14
76	lsolation and characterization of microsatellites in Aphidius ervi (Hymenoptera: Braconidae) and their applicability to related species. Molecular Ecology Notes, 2001, 1, 197-199.	1.7	14
77	Viability selection on overwintering eggs in a field cricket mosaic hybrid zone. Oikos, 2006, 115, 53-68.	2.7	13
78	Selective Constraint Dominates the Evolution of Genes Expressed in a Novel Reproductive Gland. Molecular Biology and Evolution, 2014, 31, 3266-3281.	8.9	12
79	Reproductive Success and Body Size in the Cricket Gryllus firmus. Journal of Insect Behavior, 2014, 27, 346-356.	0.7	11
80	Consequences of coupled barriers to gene flow for the buildâ€up of genomic differentiation. Evolution; International Journal of Organic Evolution, 2022, 76, 985-1002.	2.3	9
81	A Δ11 desaturase gene genealogy reveals two divergent allelic classes within the European corn borer (Ostrinia nubilalis). BMC Evolutionary Biology, 2010, 10, 112.	3.2	6
82	Genes Integral to the Reproductive Function of Male Reproductive Tissues Drive Heterogeneity in Evolutionary Rates in Japanese Quail. G3: Genes, Genomes, Genetics, 2018, 8, 39-51.	1.8	6
83	Inferences about the origin of a field cricket hybrid zone from a mitochondrial DNA phylogeny. Heredity, 1997, 79, 484-494.	2.6	4
84	Genetics Reveal the Origin and Timing of a Cryptic Insular Introduction of Muskrats in North America. PLoS ONE, 2014, 9, e111856.	2.5	3
85	Return of the Hopeful Monster? - The Material Basis of Evolution.Richard B. Goldschmidt, with an introduction by Stephen J. Gould. Yale University Press; New Haven. 1982. (Reprint of 1940 edition.) xlii + 436 pp. \$12.95 (paperback) Paleobiology, 1982, 8, 459-463.	2.0	2
86	Microsatellites in the striped ground crickets, Allonemobius (Orthoptera: Gryllidae). Molecular Ecology Notes, 2007, 7, 1094-1096.	1.7	0