C Garrison Fathman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10766311/publications.pdf

Version: 2024-02-01

94433 110387 7,742 67 37 64 citations h-index g-index papers 69 69 69 7820 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gene Expression Analysis of the Pre-Diabetic Pancreas to Identify Pathogenic Mechanisms and Biomarkers of Type 1 Diabetes. Frontiers in Endocrinology, 2020, 11, 609271.	3.5	18
2	Identification of a common immune regulatory pathway induced by small heat shock proteins, amyloid fibrils, and nicotine. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7081-7086.	7.1	32
3	Selective expansion of human regulatory T cells in nasal polyps, and not adjacent tissue microenvironments, in individual patients exposed to steroids. Clinical Immunology, 2017, 179, 66-76.	3.2	10
4	Impact of blood collection and processing on peripheral blood gene expression profiling in type 1 diabetes. BMC Genomics, 2017, 18, 636.	2.8	9
5	Expression-Based Genome-Wide Association Study Links Vitamin Dâ \in "Binding Protein With Autoantigenicity in Type 1 Diabetes. Diabetes, 2016, 65, 1341-1349.	0.6	33
6	Mass cytometry as a platform for the discovery of cellular biomarkers to guide effective rheumatic disease therapy. Arthritis Research and Therapy, 2015, 17, 127.	3.5	53
7	Amyloid fibrils activate B-1a lymphocytes to ameliorate inflammatory brain disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15016-15023.	7.1	24
8	Inflammation and Hyperglycemia MediateDeaf1Splicing in the Pancreatic Lymph Nodes via Distinct Pathways During Type 1 Diabetes. Diabetes, 2015, 64, 604-617.	0.6	21
9	Large-Scale and Comprehensive Immune Profiling and Functional Analysis of Normal Human Aging. PLoS ONE, 2015, 10, e0133627.	2.5	90
10	Mechanisms of action of therapeutic amyloidogenic hexapeptides in amelioration of inflammatory brain disease. Journal of Experimental Medicine, 2014, 211, 1847-1856.	8.5	14
11	Poly-l-Arginine Topical Lotion Tested in a Mouse Model for Frostbite Injury. Wilderness and Environmental Medicine, 2014, 25, 160-165.	0.9	15
12	Therapeutic Effects of Systemic Administration of Chaperone αB-Crystallin Associated with Binding Proinflammatory Plasma Proteins. Journal of Biological Chemistry, 2012, 287, 9708-9721.	3.4	79
13	Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines. Nature Chemical Biology, 2012, 8, 990-998.	8.0	7 3
14	Exploiting a natural conformational switch to engineer an interleukin-2 †superkine†M. Nature, 2012, 484, 529-533.	27.8	438
15	GRAIL: a unique mediator of CD4 Tâ€lymphocyte unresponsiveness. FEBS Journal, 2011, 278, 47-58.	4.7	45
16	Naive CD4 T Cell Proliferation Is Controlled by Mammalian Target of Rapamycin Regulation of GRAIL Expression. Journal of Immunology, 2009, 182, 5919-5928.	0.8	36
17	The Transmembrane E3 Ligase GRAIL Ubiquitinates and Degrades CD83 on CD4 T Cells. Journal of Immunology, 2009, 183, 438-444.	0.8	38
18	Cutting Edge: The Transmembrane E3 Ligase GRAIL Ubiquitinates the Costimulatory Molecule CD40 Ligand during the Induction of T Cell Anergy. Journal of Immunology, 2008, 181, 1622-1626.	0.8	54

#	Article	IF	CITATIONS
19	The Single Subunit Transmembrane E3 Ligase Gene Related to Anergy in Lymphocytes (GRAIL) Captures and Then Ubiquitinates Transmembrane Proteins across the Cell Membrane. Journal of Biological Chemistry, 2008, 283, 28497-28505.	3.4	63
20	CD4+CD25+ Regulatory T Cells as Adoptive Cell Therapy for Autoimmune Disease and for the Treatment of Graft-Versus-Host Disease., 2008,, 231-252.		0
21	Naive and Memory T Cells Induce Different Types of Graft-versus-Host Disease. Journal of Immunology, 2007, 179, 6547-6554.	0.8	100
22	GRAIL Is Up-regulated in CD4+ CD25+ T Regulatory Cells and Is Sufficient for Conversion of T Cells to a Regulatory Phenotype. Journal of Biological Chemistry, 2007, 282, 9696-9702.	3.4	65
23	Molecular mechanisms of CD4+ T-cell anergy. Nature Reviews Immunology, 2007, 7, 599-609.	22.7	160
24	CD4+CD25+Regulatory T Cells and Their Therapeutic Potential. Annual Review of Medicine, 2006, 57, 381-402.	12.2	115
25	T Cell Anergy: Where It's LAT. Immunity, 2006, 24, 501-503.	14.3	5
26	Does our current understanding of the molecular basis of immune tolerance predict new therapies for autoimmune disease?. Nature Clinical Practice Rheumatology, 2006, 2, 491-499.	3.2	11
27	A Novel E3 Ubiquitin Ligase Substrate Screen Identifies Rho Guanine Dissociation Inhibitor as a Substrate of Gene Related to Anergy in Lymphocytes. Journal of Immunology, 2006, 177, 7559-7566.	0.8	69
28	Allosensitized Memory CD4 T Cells Induce Chronic Graft Versus Host Disease Blood, 2006, 108, 449-449.	1.4	1
29	Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood, 2005, 105, 2220-2226.	1.4	379
30	L-selectin and \hat{I}^2 7 integrin on donor CD4 T cells are required for the early migration to host mesenteric lymph nodes and acute colitis of graft-versus-host disease. Blood, 2005, 106, 4009-4015.	1.4	73
31	An array of possibilities for the study of autoimmunity. Nature, 2005, 435, 605-611.	27.8	89
32	Bioluminescent Imaging of Human Leukemic Stem Cell Engraftment Blood, 2005, 106, 696-696.	1.4	1
33	Two isoforms of otubain 1 regulate T cell anergy via GRAIL. Nature Immunology, 2004, 5, 45-54.	14.5	160
34	Targeted gene therapy: frontiers in the development of ?smart drugs?. Trends in Biotechnology, 2004, 22, 304-310.	9.3	19
35	GRAIL, an E3 ubiquitin ligase, is necessary for anergy induction in CD4+ T cells. Autoimmunity Reviews, 2004, 3, 571-572.	5.8	0
36	Murine CD4+CD25+ Regulatory T Cells Fail to Undergo Chromatin Remodeling Across the Proximal Promoter Region of the IL-2 Gene. Journal of Immunology, 2004, 173, 4994-5001.	0.8	66

3

#	Article	IF	CITATIONS
37	Essential Role of the E3 Ubiquitin Ligase Cbl-b in T Cell Anergy Induction. Immunity, 2004, 21, 167-177.	14.3	308
38	T-Cell Anergy: From Phenotype to Genotype and Back. Immunologic Research, 2003, 28, 255-264.	2.9	5
39	Treatment of Autoimmune Disease by Adoptive Cellular Gene Therapy. Annals of the New York Academy of Sciences, 2003, 998, 512-519.	3.8	51
40	CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nature Medicine, 2003, 9, 1144-1150.	30.7	1,174
41	GRAIL. Immunity, 2003, 18, 535-547.	14.3	272
42	The Subpopulation of CD4+CD25+ Splenocytes That Delays Adoptive Transfer of Diabetes Expresses L-Selectin and High Levels of CCR7. Journal of Immunology, 2002, 169, 2461-2465.	0.8	332
43	The Potential for Gene Therapy in the Treatment of Autoimmune Disease. Clinical Immunology, 2002, 104, 204-216.	3.2	22
44	Retroviral Gene Therapy of Collagen-Induced Arthritis by Local Delivery of IL-4. Clinical Immunology, 2002, 105, 304-314.	3.2	45
45	CD4 T-helper cells engineered to produce IL-10 prevent allergen-induced airway hyperreactivity and inflammation. Journal of Allergy and Clinical Immunology, 2002, 110, 460-468.	2.9	202
46	Adoptive cellular gene therapy of autoimmune disease. Autoimmunity Reviews, 2002, 1, 213-219.	5.8	24
47	Immunomodulatory vaccination in autoimmune disease. Endocrinology and Metabolism Clinics of North America, 2002, 31, 441-456.	3.2	4
48	Donor-type CD4+CD25+ Regulatory T Cells Suppress Lethal Acute Graft-Versus-Host Disease after Allogeneic Bone Marrow Transplantation. Journal of Experimental Medicine, 2002, 196, 389-399.	8.5	1,012
49	Autoimmune diseases: genes, bugs and failed regulation. Nature Immunology, 2001, 2, 759-761.	14.5	174
50	CD4+CD25+ T Cells Facilitate the Induction of T Cell Anergy. Journal of Immunology, 2001, 167, 4271-4275.	0.8	121
51	Adoptive Immunotherapy of Experimental Autoimmune Encephalomyelitis Via T Cell Delivery of the IL-12 p40 Subunit. Journal of Immunology, 2001, 167, 2379-2387.	0.8	185
52	Antigen-specific T cell–mediated gene therapy in collagen-induced arthritis. Journal of Clinical Investigation, 2001, 107, 1293-1301.	8.2	171
53	Targeting Rare Populations of Murine Antigen-Specific T Lymphocytes by Retroviral Transduction for Potential Application in Gene Therapy for Autoimmune Disease. Journal of Immunology, 2000, 164, 3581-3590.	0.8	105
54	Rapid and Efficient Vascular Transport of Arginine Polymers Inhibits Myointimal Hyperplasia. Circulation, 2000, 102, 2629-2635.	1.6	20

#	Article	IF	Citations
55	Gene therapy for multiple sclerosis. , 2000, , 119-131.		0
56	A gene therapy approach to treatment of autoimmune disease. Immunologic Research, 1998, 18, 15-26.	2.9	5
57	Th1 unresponsiveness can be infectious for unrelated antigens. Immunology and Cell Biology, 1998, 76, 173-178.	2.3	4
58	T Cell Receptor (TCR) Engagement Leads to Activation-induced Splicing of  Tumor Necrosis Factor (TNF) Nuclear Pre-mRNA. Journal of Experimental Medicine, 1998, 188, 247-254.	8.5	52
59	Local Delivery of Interleukin 4 by Retrovirus-Transduced T Lymphocytes Ameliorates Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 1997, 185, 1711-1714.	8.5	250
60	Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature, 1996, 379, 343-346.	27.8	382
61	CD4-positive/heat-stable antigen-positive thymocytes cause graft-versus-host disease across non-major histocompatibility complex incompatibilities. European Journal of Immunology, 1994, 24, 1706-1709.	2.9	3
62	Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature, 1993, 365, 642-644.	27.8	265
63	Stimulating the lymphocytes. Current Biology, 1993, 3, 558-559.	3.9	1
64	Peptides as therapy of autoimmune disease. Diabetes/metabolism Reviews, 1993, 9, 239-244.	0.3	2
65	DRB1*LY10 â€" a newDRB1 allele and its haplotypic association. Immunogenetics, 1990, 32, 214-217.	2.4	21
66	Clonotypic Antibodies which Stimulate T Cell Clone Proliferation. Immunological Reviews, 1984, 81, 21-38.	6.0	12
67	Distinct B Cell Subpopulations Differ in Their Genetic Requirements for Activation by T Helper Cells. Immunological Reviews, 1982, 64, 137-160.	6.0	60