
Deborah A Shear

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10763634/publications.pdf Version: 2024-02-01

Πεβορλή Δ Shead

#	Article	IF	CITATIONS
1	Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 208-217.	2.7	193
2	Progesterone Protects against Necrotic Damage and Behavioral Abnormalities Caused by Traumatic Brain Injury. Experimental Neurology, 2002, 178, 59-67.	4.1	160
3	Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Research, 2004, 1026, 11-22.	2.2	156
4	Fibronectin Promotes Survival and Migration of Primary Neural Stem Cells Transplanted into the Traumatically Injured Mouse Brain. Cell Transplantation, 2002, 11, 283-295.	2.5	130
5	Comparison of intrastriatal injections of quinolinic acid and 3-nitropropionic acid for use in animal models of Huntington's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1998, 22, 1217-1240.	4.8	97
6	Longitudinal Characterization of Motor and Cognitive Deficits in a Model of Penetrating Ballistic-Like Brain Injury. Journal of Neurotrauma, 2010, 27, 1911-1923.	3.4	79
7	Approach to Modeling, Therapy Evaluation, Drug Selection, and Biomarker Assessments for a Multicenter Pre-Clinical Drug Screening Consortium for Acute Therapies in Severe Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 513-522.	3.4	78
8	Insight into Pre-Clinical Models of Traumatic Brain Injury Using Circulating Brain Damage Biomarkers: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 595-605.	3.4	71
9	Pre-Clinical Testing of Therapies for Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 2737-2754.	3.4	68
10	NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating ballistic-like brain injury in rats. Journal of Neuroinflammation, 2009, 6, 19.	7.2	67
11	Gut Microbiota as a Therapeutic Target to Ameliorate the Biochemical, Neuroanatomical, and Behavioral Effects of Traumatic Brain Injuries. Frontiers in Neurology, 2019, 10, 875.	2.4	65
12	Nicotinamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 523-537.	3.4	63
13	Synthesis of Findings, Current Investigations, and Future Directions: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 606-614.	3.4	61
14	Levetiracetam Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 581-594.	3.4	60
15	Early Microglial Activation Following Closed-Head Concussive Injury Is Dominated by Pro-Inflammatory M-1 Type. Frontiers in Neurology, 2018, 9, 964.	2.4	57
16	Chronic Administration of Quinolinic Acid in the Rat Striatum Causes Spatial Learning Deficits in a Radial Arm Water Maze Task. Experimental Neurology, 1998, 150, 305-311.	4.1	52
17	Biomarkers Track Damage after Graded Injury Severity in a Rat Model of Penetrating Brain Injury. Journal of Neurotrauma, 2013, 30, 1161-1169.	3.4	51
18	Erythropoietin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 538-552.	3.4	51

DEBORAH A SHEAR

#	Article	IF	CITATIONS
19	Severity Profile of Penetrating Ballistic-Like Brain Injury on Neurofunctional Outcome, Blood–Brain Barrier Permeability, and Brain Edema Formation. Journal of Neurotrauma, 2011, 28, 2185-2195.	3.4	47
20	Brain-related proteins as serum biomarkers of acute, subconcussive blast overpressure exposure: A cohort study of military personnel. PLoS ONE, 2019, 14, e0221036.	2.5	46
21	Cyclosporine Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 553-566.	3.4	44
22	Multi-Center Pre-clinical Consortia to Enhance Translation of Therapies and Biomarkers for Traumatic Brain Injury: Operation Brain Trauma Therapy and Beyond. Frontiers in Neurology, 2018, 9, 640.	2.4	42
23	Functional and Molecular Correlates after Single and Repeated Rat Closed-Head Concussion: Indices of Vulnerability after Brain Injury. Journal of Neurotrauma, 2017, 34, 2768-2789.	3.4	41
24	Operation Brain Trauma Therapy: 2016 Update. Military Medicine, 2018, 183, 303-312.	0.8	41
25	Simvastatin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 567-580.	3.4	40
26	Stem cell survival and functional outcome after traumatic brain injury is dependent on transplant timing and location. Restorative Neurology and Neuroscience, 2011, 29, 215-225.	0.7	37
27	Correlations between Blood–Brain Barrier Disruption and Neuroinflammation in an Experimental Model of Penetrating Ballistic-Like Brain Injury. Journal of Neurotrauma, 2014, 31, 505-514.	3.4	35
28	Synergism of human amnion-derived multipotent progenitor (AMP) cells and a collagen scaffold in promoting brain wound recovery: Pre-clinical studies in an experimental model of penetrating ballistic-like brain injury. Brain Research, 2011, 1368, 71-81.	2.2	34
29	A Novel Animal Model of Closed-Head Concussive-Induced Mild Traumatic Brain Injury: Development, Implementation, and Characterization. Journal of Neurotrauma, 2012, 29, 268-280.	3.4	33
30	Serum Glial Fibrillary Acidic Protein Predicts Tissue Glial Fibrillary Acidic Protein Break-Down Products and Therapeutic Efficacy after Penetrating Ballistic-Like Brain Injury. Journal of Neurotrauma, 2016, 33, 147-156.	3.4	29
31	Comprehensive Profile of Acute Mitochondrial Dysfunction in a Preclinical Model of Severe Penetrating TBI. Frontiers in Neurology, 2019, 10, 605.	2.4	29
32	Subacute Changes in Cleavage Processing of Amyloid Precursor Protein and Tau following Penetrating Traumatic Brain Injury. PLoS ONE, 2016, 11, e0158576.	2.5	28
33	Quinolinic Acid Released from Polymeric Brain Implants Causes Behavioral and Neuroanatomical Alterations in a Rodent Model of Huntington's Disease. Experimental Neurology, 2000, 163, 430-439.	4.1	27
34	Intravenous Administration of Simvastatin Improves Cognitive Outcome following Severe Traumatic Brain Injury in Rats. Journal of Neurotrauma, 2016, 33, 1492-1500.	3.4	26
35	Amelioration of Penetrating Ballistic-Like Brain Injury Induced Cognitive Deficits after Neuronal Differentiation of Transplanted Human Neural Stem Cells. Journal of Neurotrauma, 2017, 34, 1981-1995.	3.4	26
36	Serum-Based Phospho-Neurofilament-Heavy Protein as Theranostic Biomarker in Three Models of Traumatic Brain Injury: An Operation Brain Trauma Therapy Study. Journal of Neurotrauma, 2019, 36, 348-359.	3.4	26

DEBORAH A SHEAR

#	Article	IF	CITATIONS
37	Neuroprotective profile of dextromethorphan in an experimental model of penetrating ballistic-like brain injury. Pharmacology Biochemistry and Behavior, 2009, 94, 56-62.	2.9	25
38	The Acute Effects of Hemorrhagic Shock on Cerebral Blood Flow, Brain Tissue Oxygen Tension, and Spreading Depolarization following Penetrating Ballistic-Like Brain Injury. Journal of Neurotrauma, 2013, 30, 1288-1298.	3.4	25
39	Glibenclamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2021, 38, 628-645.	3.4	20
40	Penetrating Traumatic Brain Injury Triggers Dysregulation of Cathepsin B Protein Levels Independent of Cysteine Protease Activity in Brain and Cerebral Spinal Fluid. Journal of Neurotrauma, 2020, 37, 1574-1586.	3.4	19
41	A comparison of two cognitive test paradigms in a penetrating brain injury model. Journal of Neuroscience Methods, 2010, 189, 84-87.	2.5	18
42	Dual Therapeutic Effects of C-10068, a Dextromethorphan Derivative, Against Post-Traumatic Nonconvulsive Seizures and Neuroinflammation in a Rat Model of Penetrating Ballistic-Like Brain Injury. Journal of Neurotrauma, 2015, 32, 1621-1632.	3.4	17
43	Comprehensive Evaluation of Neuroprotection Achieved by Extended Selective Brain Cooling Therapy in a Rat Model of Penetrating Ballistic-Like Brain Injury. Therapeutic Hypothermia and Temperature Management, 2016, 6, 30-39.	0.9	17
44	Cerebrospinal Fluid Biomarkers Are Associated With Glial Fibrillary Acidic Protein and αII-spectrin Breakdown Products in Brain Tissues Following Penetrating Ballistic-Like Brain Injury in Rats. Frontiers in Neurology, 2018, 9, 490.	2.4	17
45	Ethosuximide and Phenytoin Dose-Dependently Attenuate Acute Nonconvulsive Seizures after Traumatic Brain Injury in Rats. Journal of Neurotrauma, 2013, 30, 1973-1982.	3.4	16
46	Long-term administration of amnion-derived cellular cytokine suspension promotes functional recovery in a model of penetrating ballistic-like brain injury. Journal of Trauma and Acute Care Surgery, 2012, 73, S156-S164.	2.1	14
47	Brain oxygen tension monitoring following penetrating ballistic-like brain injury in rats. Journal of Neuroscience Methods, 2012, 203, 115-121.	2.5	13
48	Treatment with amnion-derived cellular cytokine solution (ACCS) induces persistent motor improvement and ameliorates neuroinflammation in a rat model of penetrating ballistic-like brain injury. Restorative Neurology and Neuroscience, 2015, 33, 189-203.	0.7	13
49	Penetrating Ballistic-Like Brain Injury Leads to MicroRNA Dysregulation, BACE1 Upregulation, and Amyloid Precursor Protein Loss in Lesioned Rat Brain Tissues. Frontiers in Neuroscience, 2020, 14, 915.	2.8	13
50	Advanced and High-Throughput Method for Mitochondrial Bioenergetics Evaluation in Neurotrauma. Methods in Molecular Biology, 2016, 1462, 597-610.	0.9	12
51	Human neural stem cell transplant location–dependent neuroprotection and motor deficit amelioration in rats with penetrating traumatic brain injury. Journal of Trauma and Acute Care Surgery, 2020, 88, 477-485.	2.1	10
52	A Military-Centered Approach to Neuroprotection for Traumatic Brain Injury. Frontiers in Neurology, 2013, 4, 73.	2.4	9
53	Alterations in brain-derived neurotrophic factor and insulin-like growth factor-1 protein levels after penetrating ballistic-like brain injury in rats. Journal of Trauma and Acute Care Surgery, 2017, 83, S16-S24.	2.1	9
54	Neuroprotection of Selective Brain Cooling After Penetrating Ballistic-like Brain Injury in Rats. Therapeutic Hypothermia and Temperature Management, 2011, 1, 33-42.	0.9	8

DEBORAH A SHEAR

#	Article	IF	CITATIONS
55	Post-Traumatic Epilepsy and Seizure Susceptibility in Rat Models of Penetrating and Closed-Head Brain Injury. Journal of Neurotrauma, 2020, 37, 236-247.	3.4	8
56	Neuroprotection and anti-seizure effects of levetiracetam in a rat model of penetrating ballistic-like brain injury. Restorative Neurology and Neuroscience, 2016, 34, 257-270.	0.7	7
57	Time-Course Evaluation of Brain Regional Mitochondrial Bioenergetics in a Pre-Clinical Model of Severe Penetrating Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 2323-2334.	3.4	7
58	Editorial: Developing Successful Neuroprotective Treatments for TBI: Translational Approaches, Novel Directions, Opportunities and Challenges. Frontiers in Neurology, 2019, 10, 1326.	2.4	5
59	Kollidon VA64 Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2021, 38, 2454-2472.	3.4	5
60	Combination therapy of levetiracetam and gabapentin against nonconvulsive seizures induced by penetrating traumatic brain injury. Journal of Trauma and Acute Care Surgery, 2017, 83, S25-S34.	2.1	4
61	Multifaceted Benefit of Whole Blood Versus Lactated Ringer's Resuscitation After Traumatic Brain Injury and Hemorrhagic Shock in Mice. Neurocritical Care, 2021, 34, 781-794.	2.4	4
62	Differential Effects of Caffeine on Motor and Cognitive Outcomes of Penetrating Ballistic-Like Brain Injury. Military Medicine, 2019, 184, 291-300.	0.8	3
63	Alterations in Peripheral Organs following Combined Hypoxemia and Hemorrhagic Shock in a Rat Model of Penetrating Ballistic-Like Brain Injury. Journal of Neurotrauma, 2020, 37, 656-664.	3.4	3
64	Choice of Whole Blood versus Lactated Ringer's Resuscitation Modifies the Relationship between Blood Pressure Target and Functional Outcome after Traumatic Brain Injury plus Hemorrhagic Shock in Mice. Journal of Neurotrauma, 2021, 38, 2907-2917.	3.4	3