
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1076327/publications.pdf Version: 2024-02-01

Памына Га

#	Article	IF	CITATIONS
1	Cerium-tungsten oxides supported on activated red mud for the selective catalytic reduction of NO. Green Energy and Environment, 2023, 8, 173-182.	8.7	4
2	Application of smog chambers in atmospheric process studies. National Science Review, 2022, 9, nwab103.	9.5	21
3	Impact of anthropogenic heat emissions on meteorological parameters and air quality in Beijing using a high-resolution model simulation. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	14
4	Remarkable enhancement in the N2 selectivity of NH3-SCR over the CeNb3Fe0.3/TiO2 catalyst in the presence of chlorobenzene. Environmental Science and Pollution Research, 2022, 29, 19309-19323.	5.3	2
5	Carbon/chlorinate deposition on MnOx-CeO2 catalyst in chlorobenzene combustion: The effect of SCR flue gas. Chemical Engineering Journal, 2022, 433, 133552.	12.7	28
6	Precise regulation of acid pretreatment for red mud SCR catalyst: Targeting on optimizing the acidity and reducibility. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	12
7	Coordinated Control of Fine-Particle and Ozone Pollution by the Substantial Reduction of Nitrogen Oxides. Engineering, 2022, 15, 13-16.	6.7	5
8	Revealing the Synergistic Deactivation Mechanism of Hydrothermal Aging and SO ₂ Poisoning on Cu/SSZ-13 under SCR Condition. Environmental Science & Technology, 2022, 56, 1917-1926.	10.0	34
9	Improvement of Al2O3 on the multi-pollutant control performance of NOx and chlorobenzene in vanadia-based catalysts. Chemosphere, 2022, 289, 133156.	8.2	13
10	Synthesis of TixSn1-xO2 mixed metal oxide for copper catalysts as high-efficiency NH3 selective catalytic oxidation. Fuel, 2022, 314, 123061.	6.4	24
11	Deactivation of Pd/SSZ-13 by Potassium and Water for Passive NOx Adsorption. Processes, 2022, 10, 222.	2.8	6
12	Identification of Intrinsic Active Sites for the Selective Catalytic Reduction of Nitric Oxide on Metal-Free Carbon Catalysts via Selective Passivation. ACS Catalysis, 2022, 12, 1024-1030.	11.2	17
13	Synergistic Effects of a CeO ₂ /SmMn ₂ O ₅ –H Diesel Oxidation Catalyst Induced by Acid-Selective Dissolution Drive the Catalytic Oxidation Reaction. ACS Applied Materials & Interfaces, 2022, 14, 2860-2870.	8.0	8
14	New insight on electroreduction of nitrate to ammonia driven by oxygen vacancies-induced strong interface interactions. Journal of Catalysis, 2022, 406, 39-47.	6.2	29
15	Direct incorporating small amount of Ce (III) in Cu-SAPO-18 catalysts for enhanced low-temperature NH3-SCR activity: Influence on Cu distribution and Si coordination. Chemical Engineering Journal, 2022, 435, 134890.	12.7	16
16	Dual Active Centers Bridged by Oxygen Vacancies of Ruthenium Singleâ€Atom Hybrids Supported on Molybdenum Oxide for Photocatalytic Ammonia Synthesis. Angewandte Chemie, 2022, 134, .	2.0	8
17	Dual Active Centers Bridged by Oxygen Vacancies of Ruthenium Singleâ€Atom Hybrids Supported on Molybdenum Oxide for Photocatalytic Ammonia Synthesis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	45
18	Like Cures like: Detoxification Effect between Alkali Metals and Sulfur over the V ₂ O ₅ /TiO ₂ deNO _{<i>x</i>} Catalyst. Environmental Science & Technology, 2022, 56, 3739-3747.	10.0	38

#	Article	IF	CITATIONS
19	Metal–Support Interactions within a Dual-Site Pd/YMn ₂ O ₅ Catalyst during CH ₄ Combustion. ACS Catalysis, 2022, 12, 4430-4439.	11.2	16
20	Breaking the Activity–Selectivity Trade-Off for Simultaneous Catalytic Elimination of Nitric Oxide and Chlorobenzene via FeVO ₄ –Fe ₂ O ₃ Interfacial Charge Transfer. ACS Catalysis, 2022, 12, 3797-3806.	11.2	43
21	Interaction Mechanism for Simultaneous Elimination of Nitrogen Oxides and Toluene over the Bifunctional CeO ₂ –TiO ₂ Mixed Oxide Catalyst. Environmental Science & Technology, 2022, 56, 4467-4476.	10.0	47
22	Efficient Electron Transfer by Plasmonic Silver in SrTiO ₃ for Low-Concentration Photocatalytic NO Oxidation. Environmental Science & Technology, 2022, 56, 3604-3612.	10.0	29
23	Efficient Electrochemical Nitrate Reduction to Ammonia with Copperâ€Supported Rhodium Cluster and Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	170
24	Efficient Electrochemical Nitrate Reduction to Ammonia with Copperâ€Supported Rhodium Cluster and Singleâ€Atom Catalysts. Angewandte Chemie, 2022, 134, .	2.0	28
25	Efficient and Simple Strategy to Obtain Ordered Mesoporous Carbons with Abundant Structural Base N Sites toward CO ₂ Selective Capture and Catalytic Conversion. ACS Sustainable Chemistry and Engineering, 2022, 10, 5175-5182.	6.7	5
26	Two-step hydrothermal synthesis of highly active MnOx-CeO2 for complete oxidation of formaldehyde. Chemical Engineering Journal, 2022, 440, 135854.	12.7	25
27	Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ over Cu/SSZ-13: Elucidating Dynamics of Cu Active Sites with In Situ UV–Vis Spectroscopy and DFT Calculations. Journal of Physical Chemistry C, 2022, 126, 8720-8733.	3.1	20
28	Intrinsic insight of energy-efficiency optimization for CO2 capture by amine-based solvent: effect of mass transfer and solvent regeneration. International Journal of Greenhouse Gas Control, 2022, 118, 103673.	4.6	14
29	Understanding the Water Effect for Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ over Cu-SSZ-13 Catalysts. ACS ES&T Engineering, 2022, 2, 1684-1696.	7.6	7
30	Structure-Directing Role of Support on Hg ⁰ Oxidation over V ₂ O ₅ /TiO ₂ Catalyst Revealed for NO <i>_x</i> and Hg ⁰ Simultaneous Control in an SCR Reactor. Environmental Science & Technology, 2022, 56, 9702-9711.	10.0	20
31	Inducing efficient proton transfer through Fe/Ni@COF to promote amine-based solvent regeneration for achieving low-cost capture of CO2 from industrial flue gas. Separation and Purification Technology, 2022, 298, 121676.	7.9	19
32	Hierarchically devising NiFeO H catalyst with surface Fe active sites for efficient oxygen evolution reaction. Catalysis Today, 2021, 364, 140-147.	4.4	14
33	Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NO with NH3. Catalysis Today, 2021, 376, 292-301.	4.4	71
34	Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	6.0	26
35	Synthesis of α–MnO2–like rod catalyst using YMn2O5 A–site sacrificial strategy for efficient benzene oxidation. Journal of Hazardous Materials, 2021, 403, 123811.	12.4	32
36	Flame synthesized nanoscale catalyst (CuCeWTi) with excellent HgO oxidation activity and hydrothermal resistance. Journal of Hazardous Materials, 2021, 408, 124427.	12.4	6

#	Article	IF	CITATIONS
37	Surface In Situ Doping Modification over Mn ₂ O ₃ for Toluene and Propene Catalytic Oxidation: The Effect of Isolated Cu ^{δ+} Insertion into the Mezzanine of Surface MnO ₂ Cladding. ACS Applied Materials & Interfaces, 2021, 13, 2753-2764.	8.0	53
38	Predicting the adsorption of organic pollutants on boron nitride nanosheets <i>via in silico</i> techniques: DFT computations and QSAR modeling. Environmental Science: Nano, 2021, 8, 795-805.	4.3	13
39	The Absence of Oxygen in Sulfation Promotes the Performance of the Sulfated CeO ₂ Catalyst for Low-Temperature Selective Catalytic Reduction of NO <i>_x</i> by NH ₃ : Redox Property versus Acidity. ACS Sustainable Chemistry and Engineering, 2021, 9, 967-979.	6.7	35
40	Multipollutant Control (MPC) of Flue Gas from Stationary Sources Using SCR Technology: A Critical Review. Environmental Science & Technology, 2021, 55, 2743-2766.	10.0	117
41	Multi-pollutant control (MPC) of NO and chlorobenzene from industrial furnaces using a vanadia-based SCR catalyst. Applied Catalysis B: Environmental, 2021, 285, 119835.	20.2	54
42	Penetration of Arsenic and Deactivation of a Honeycomb V ₂ O ₅ –WO ₃ /TiO ₂ Catalyst in a Glass Furnace. Environmental Science & Technology, 2021, 55, 11368-11374.	10.0	18
43	Fabrication of Nanohybrid Spinel@CuO Catalysts for Propane Oxidation: Modified Spinel and Enhanced Activity by Temperature-Dependent Acid Sites. ACS Applied Materials & Interfaces, 2021, 13, 27106-27118.	8.0	30
44	New Insights on Competitive Adsorption of NO/SO ₂ on TiO ₂ Anatase for Photocatalytic NO Oxidation. Environmental Science & Technology, 2021, 55, 9285-9292.	10.0	24
45	Boosting nitrous oxide direct decomposition performance based on samarium doping effects. Chemical Engineering Journal, 2021, 414, 128643.	12.7	30
46	Impact of NOx and NH3 addition on toluene oxidation over MnOx-CeO2 catalyst. Journal of Hazardous Materials, 2021, 416, 125939.	12.4	37
47	Balance of activation and ring-breaking for toluene oxidation over CuO-MnO bimetallic oxides. Journal of Hazardous Materials, 2021, 415, 125637.	12.4	49
48	Boosting the Catalytic Performance of CeO ₂ in Toluene Combustion via the Ce–Ce Homogeneous Interface. Environmental Science & Technology, 2021, 55, 12630-12639.	10.0	71
49	Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia. Chem Catalysis, 2021, 1, 1088-1103.	6.1	80
50	Balancing redox and acidic properties for optimizing catalytic performance of SCR catalysts: A case study of nanopolyhedron CeO -supported WO. Journal of Environmental Chemical Engineering, 2021, 9, 105828.	6.7	7
51	A novel γ-like MnO2 catalyst for ozone decomposition in high humidity conditions. Journal of Hazardous Materials, 2021, 420, 126641.	12.4	33
52	Effects of phosphorus modification on the catalytic properties and performance of CuCeZr mixed metal catalyst for simultaneous removal of CO and NOx. Chemical Engineering Journal, 2021, 423, 130228.	12.7	32
53	Vanadium Substitution as an Effective Way to Enhance the Redox Ability of Tungstophosphoric Acid and for Application of NH3-SCR. Catalysis Letters, 2021, 151, 2250.	2.6	2
54	Key intermediates from simultaneous removal of NO _{<i>x</i>} and chlorobenzene over a V ₂ O ₅ –WO ₃ /TiO ₂ catalyst: a combined experimental and DFT study. Catalysis Science and Technology, 2021, 11, 7260-7267.	4.1	9

#	Article	IF	CITATIONS
55	Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	6.0	14
56	In Situ Modulation of A‣ite Vacancies in LaMnO _{3.15} Perovskite for Surface Lattice Oxygen Activation and Boosted Redox Reactions. Angewandte Chemie - International Edition, 2021, 60, 26747-26754.	13.8	85
57	Review of Sulfur Promotion Effects on Metal Oxide Catalysts for NO _{<i>x</i>} Emission Control. ACS Catalysis, 2021, 11, 13119-13139.	11.2	69
58	Temperature and Reaction Environment Influence the Nature of Platinum Species Supported on Ceria. ACS Catalysis, 2021, 11, 13041-13049.	11.2	13
59	Surface Reconstruction of a Mullite-Type Catalyst via Selective Dissolution for NO Oxidation. ACS Catalysis, 2021, 11, 14507-14520.	11.2	27
60	Effects of anaerobic SO2 treatment on nano-CeO2 of different morphologies for selective catalytic reduction of NOx with NH3. Chemical Engineering Journal, 2020, 382, 122910.	12.7	68
61	Low-temperature selective catalytic reduction of N2O by CO over Fe-ZSM-5 catalysts in the presence of O2. Journal of Hazardous Materials, 2020, 383, 121117.	12.4	46
62	A multiple-active-site Cu/SSZ-13 for NH3-SCO: Influence of Si/Al ratio on the catalytic performance. Catalysis Communications, 2020, 135, 105751.	3.3	40
63	Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates. Applied Catalysis B: Environmental, 2020, 260, 118150.	20.2	400
64	A new insight into adsorption state and mechanism of adsorbates in porous materials. Journal of Hazardous Materials, 2020, 382, 121103.	12.4	38
65	Catalytic performance and reaction mechanism of NO oxidation over Co3O4 catalysts. Applied Catalysis B: Environmental, 2020, 267, 118371.	20.2	47
66	Promoting SO ₂ Resistance of a CeO ₂ (5)-WO ₃ (9)/TiO ₂ Catalyst for Hg ⁰ Oxidation via Adjusting the Basicity and Acidity Sites Using a CuO Doping Method. Environmental Science & Technology, 2020, 54, 1889-1897.	10.0	42
67	The effect of additives and intermediates on vanadia-based catalyst for multi-pollutant control. Catalysis Science and Technology, 2020, 10, 323-326.	4.1	25
68	Core-shell-like structured $\hat{l}\pm$ -MnO2@CeO2 catalyst for selective catalytic reduction of NO: Promoted activity and SO2 tolerance. Chemical Engineering Journal, 2020, 391, 123473.	12.7	50
69	Modified red mud catalyst for the selective catalytic reduction of nitrogen oxides: Impact mechanism of cerium precursors on surface physicochemical properties. Chemosphere, 2020, 257, 127215.	8.2	25
70	Nb-incorporated Fe (oxy)hydroxide derived from structural transformation for efficient oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 24598-24607.	10.3	18
71	Simultaneous Selective Catalytic Reduction of NO and N ₂ O by NH ₃ over Fe-Zeolite Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 19500-19509.	3.7	17
72	Performance and Mechanism of Photocatalytic Toluene Degradation and Catalyst Regeneration by Thermal/UV Treatment. Environmental Science & Technology, 2020, 54, 14465-14473.	10.0	76

#	Article	IF	CITATIONS
73	Roles of Oxygen Vacancies in the Bulk and Surface of CeO ₂ for Toluene Catalytic Combustion. Environmental Science & Technology, 2020, 54, 12684-12692.	10.0	231
74	B-Site modification of LaMn _{0.9} Co _{0.1} O ₃ perovskite using a selective dissolution method in C ₃ H ₆ oxidation. Catalysis Science and Technology, 2020, 10, 6464-6467.	4.1	6
75	New Insight into the In Situ SO2 Poisoning Mechanism over Cu-SSZ-13 for the Selective Catalytic Reduction of NOx with NH3. Catalysts, 2020, 10, 1391.	3.5	17
76	Quantitative Cu Counting Methodologies for Cu/SSZ-13 Selective Catalytic Reduction Catalysts by Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 28061-28073.	3.1	20
77	Zeolitic Imidazolate Framework-67-Derived CeO ₂ @Co ₃ O ₄ Core–Shell Microspheres with Enhanced Catalytic Activity toward Toluene Oxidation. Industrial & Engineering Chemistry Research, 2020, 59, 10328-10337.	3.7	28
78	The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst. Applied Catalysis B: Environmental, 2020, 277, 119257.	20.2	86
79	Reaction mechanism of propane oxidation over Co3O4 nanorods as rivals of platinum catalysts. Chemical Engineering Journal, 2020, 402, 125911.	12.7	45
80	Rational tuning towards A/B-sites double-occupying cobalt on tri-metallic spinel: Insights into its catalytic activity on toluene catalytic oxidation. Chemical Engineering Journal, 2020, 399, 125792.	12.7	30
81	Enhanced Low-Temperature Activity of Toluene Oxidation over the Rod-like MnO ₂ /LaMnO ₃ Perovskites with Alkaline Hydrothermal and Acid-Etching Treatment. Industrial & Engineering Chemistry Research, 2020, 59, 6556-6564.	3.7	42
82	Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: Active heterostructure interfaces. Applied Catalysis B: Environmental, 2020, 278, 119279.	20.2	131
83	Probing Active-Site Relocation in Cu/SSZ-13 SCR Catalysts during Hydrothermal Aging by In Situ EPR Spectroscopy, Kinetics Studies, and DFT Calculations. ACS Catalysis, 2020, 10, 9410-9419.	11.2	64
84	Activity enhancement of sulphated Fe2O3 supported on TiO2–ZrO2 for the selective catalytic reduction of NO by NH3. Applied Surface Science, 2020, 528, 146695.	6.1	29
85	Severe deactivation and artificial enrichment of thallium on commercial SCR catalysts installed in cement kiln. Applied Catalysis B: Environmental, 2020, 277, 119194.	20.2	20
86	Promoter rather than Inhibitor: Phosphorus Incorporation Accelerates the Activity of V ₂ O ₅ –WO ₃ /TiO ₂ Catalyst for Selective Catalytic Reduction of NO _{<i>x</i>} by NH ₃ . ACS Catalysis, 2020, 10, 2747-2753.	11.2	73
87	Sn-doped rutile TiO2 for vanadyl catalysts: Improvements on activity and stability in SCR reaction. Applied Catalysis B: Environmental, 2020, 269, 118797.	20.2	57
88	The poisoning mechanism of gaseous HCl on low-temperature SCR catalysts: MnO â^'CeO2 as an example. Applied Catalysis B: Environmental, 2020, 267, 118668.	20.2	82
89	The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: Improvement of low-temperature activity and sulfur resistance. Chemical Engineering Journal, 2020, 387, 124090.	12.7	124
90	Distinctive Bimetallic Oxides for Enhanced Catalytic Toluene Combustion: Insights into the Tunable Fabrication of Mnâ^'Ce Hollow Structure. ChemCatChem, 2020, 12, 2872-2879.	3.7	27

#	Article	IF	CITATIONS
91	A facile and controllable in situ sulfation strategy for CuCeZr catalyst for NH3-SCR. Applied Catalysis A: General, 2020, 597, 117554.	4.3	33
92	Low content of CoOx supported on nanocrystalline CeO2 for toluene combustion: The importance of interfaces between active sites and supports. Applied Catalysis B: Environmental, 2019, 240, 329-336.	20.2	124
93	NH3-SCR performance of WO3 blanketed CeO2 with different morphology: Balance of surface reducibility and acidity. Catalysis Today, 2019, 332, 42-48.	4.4	79
94	Iron tungsten mixed composite as a robust oxygen evolution electrocatalyst. Chemical Communications, 2019, 55, 10944-10947.	4.1	28
95	Balance between Reducibility and N ₂ O Adsorption Capacity for the N ₂ O Decomposition: Cu _{<i>x</i>} Co _{<i>y</i>} Catalysts as an Example. Environmental Science & Technology, 2019, 53, 10379-10386.	10.0	36
96	The Roles of Various Plasma Active Species in Toluene Degradation by Non-thermal Plasma and Plasma Catalysis. Plasma Chemistry and Plasma Processing, 2019, 39, 1469-1482.	2.4	17
97	The synergistic mechanism of NO _x and chlorobenzene degradation in municipal solid waste incinerators. Catalysis Science and Technology, 2019, 9, 4286-4292.	4.1	39
98	Comparison of NH3-SCO performance over CuOx/H-SSZ-13 and CuOx/H-SAPO-34 catalysts. Applied Catalysis A: General, 2019, 585, 117119.	4.3	17
99	Enhanced low-temperature activity of LaMnO3 for toluene oxidation: The effect of treatment with an acidic KMnO4. Chemical Engineering Journal, 2019, 366, 92-99.	12.7	112
100	Vanadium-density-dependent thermal decomposition of NH ₄ HSO ₄ on V ₂ O ₅ /TiO ₂ SCR catalysts. Catalysis Science and Technology, 2019, 9, 3779-3787.	4.1	31
101	Insights over Titanium Modified FeMgOx Catalysts for Selective Catalytic Reduction of NOx with NH3: Influence of Precursors and Crystalline Structures. Catalysts, 2019, 9, 560.	3.5	9
102	Using Transient FTIR Spectroscopy to Probe Active Sites and Reaction Intermediates for Selective Catalytic Reduction of NO on Cu/SSZ-13 Catalysts. ACS Catalysis, 2019, 9, 6137-6145.	11.2	105
103	Hollow-Structural Ag/Co ₃ O ₄ Nanocatalyst for CO Oxidation: Interfacial Synergistic Effect. ACS Applied Nano Materials, 2019, 2, 3480-3489.	5.0	60
104	Modified Silica Adsorbents for Toluene Adsorption under Dry and Humid Conditions: Impacts of Pore Size and Surface Chemistry. Langmuir, 2019, 35, 8927-8934.	3.5	24
105	Effect of Fe precursors on the catalytic activity of Fe/SAPO-34 catalysts for N2O decomposition. Catalysis Communications, 2019, 128, 105706.	3.3	16
106	Deactivation Mechanism of Multipoisons in Cement Furnace Flue Gas on Selective Catalytic Reduction Catalysts. Environmental Science & Technology, 2019, 53, 6937-6944.	10.0	75
107	Cu/SAPO-34 prepared by a facile ball milling method for enhanced catalytic performance in the selective catalytic reduction of NO _x with NH ₃ . Physical Chemistry Chemical Physics, 2019, 21, 22113-22120.	2.8	15
108	Fe-Doped α-MnO ₂ nanorods for the catalytic removal of NO _x and chlorobenzene: the relationship between lattice distortion and catalytic redox properties. Physical Chemistry Chemical Physics, 2019, 21, 25880-25888.	2.8	39

#	Article	IF	CITATIONS
109	Drivers of improved PM _{2.5} air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24463-24469.	7.1	1,193
110	Investigation on removal of NO and HgO with different Cu species in Cu-SAPO-34 zeolites. Catalysis Communications, 2019, 119, 91-95.	3.3	17
111	Highly selective α-Mn2O3 catalyst for cGPF soot oxidation: Surface activated oxygen enhancement via selective dissolution. Chemical Engineering Journal, 2019, 364, 448-451.	12.7	35
112	The promotion effect of ceria on high vanadia loading NH3-SCR catalysts. Catalysis Communications, 2019, 121, 84-88.	3.3	16
113	Exploration of reaction mechanism between acid gases and elemental mercury on the CeO2–WO3/TiO2 catalyst via in situ DRIFTS. Fuel, 2019, 239, 162-172.	6.4	46
114	Selective Catalytic Reduction of NO _{<i>x</i>} with Ammonia over Copper Ion Exchanged SAPOâ€47 Zeolites in a Wide Temperature Range. ChemCatChem, 2018, 10, 2481-2487.	3.7	10
115	Enhancement of N2O decomposition performance by N2O pretreatment over Ce-Co-O catalyst. Chemical Engineering Journal, 2018, 347, 184-192.	12.7	61
116	Interaction of phosphorus with a FeTiOx catalyst for selective catalytic reduction of NOx with NH3: Influence on surface acidity and SCR mechanism. Chemical Engineering Journal, 2018, 347, 173-183.	12.7	72
117	Carbon Dioxide Promotes Dehydrogenation in the Equimolar C 2 H 2 O 2 Reaction to Synthesize Carbon Nanotubes. Small, 2018, 14, 1703482.	10.0	8
118	NO _{<i>x</i>} Removal over V ₂ O ₅ /WO ₃ –TiO ₂ Prepared by a Grinding Method: Influence of the Precursor on Vanadium Dispersion. Industrial & Engineering Chemistry Research, 2018, 57, 150-157.	3.7	32
119	Improved Activity and H ₂ O Resistance of Cu-Modified MnO ₂ Catalysts for NO Oxidation. Industrial & Engineering Chemistry Research, 2018, 57, 920-926.	3.7	26
120	Dechlorination of chlorobenzene on vanadium-based catalysts for low-temperature SCR. Chemical Communications, 2018, 54, 2032-2035.	4.1	63
121	Effect of pore size in mesoporous MnO2 prepared by KIT-6 aged at different temperatures on ethanol catalytic oxidation. Chinese Journal of Catalysis, 2018, 39, 630-638.	14.0	15
122	Excellent Activity and Selectivity of One-Pot Synthesized Cu–SSZ-13 Catalyst in the Selective Catalytic Oxidation of Ammonia to Nitrogen. Environmental Science & Technology, 2018, 52, 4802-4808.	10.0	95
123	Shape dependence and sulfate promotion of CeO2 for selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2018, 232, 246-259.	20.2	160
124	Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3. Applied Surface Science, 2018, 428, 526-533.	6.1	89
125	Studies on toluene adsorption performance and hydrophobic property in phenyl functionalized KIT-6. Chemical Engineering Journal, 2018, 334, 191-197.	12.7	56
126	Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion. Chemical Engineering Journal, 2018, 331, 425-434.	12.7	135

#	Article	IF	CITATIONS
127	Promotion Effect of Gaâ^'Co Spinel Derived from Layered Double Hydroxides for Toluene Oxidation. ChemCatChem, 2018, 10, 4838-4843.	3.7	30
128	The promoting effects of amorphous CePO 4 species on phosphorus-doped CeO 2 /TiO 2 catalysts for selective catalytic reduction of NO x by NH 3. Molecular Catalysis, 2018, 453, 47-54.	2.0	41
129	New Insight into SO ₂ Poisoning and Regeneration of CeO ₂ –WO ₃ /TiO ₂ and V ₂ O ₅ –WO ₃ /TiO ₂ Catalysts for Low-Temperature NH ₃ –SCR. Environmental Science &: Technology, 2018, 52, 7064-7071.	10.0	236
130	Facile surface improvement method for LaCoO ₃ for toluene oxidation. Catalysis Science and Technology, 2018, 8, 3166-3173.	4.1	111
131	Different exposed facets VO /CeO2 catalysts for the selective catalytic reduction of NO with NH3. Chemical Engineering Journal, 2018, 349, 184-191.	12.7	86
132	Engineering surface functional groups on mesoporous silica: towards a humidity-resistant hydrophobic adsorbent. Journal of Materials Chemistry A, 2018, 6, 13769-13777.	10.3	39
133	MnO -CeO2 catalysts for effective NO reduction in the presence of chlorobenzene. Catalysis Communications, 2018, 117, 1-4.	3.3	49
134	Synergistic Promotion Effect between NO _{<i>x</i>} and Chlorobenzene Removal on MnO _{<i>x</i>} –CeO ₂ Catalyst. ACS Applied Materials & Interfaces, 2018, 10, 30426-30432.	8.0	74
135	Fe ₂ O ₃ @SiTi core–shell catalyst for the selective catalytic reduction of NO _x with NH ₃ : activity improvement and HCl tolerance. Catalysis Science and Technology, 2018, 8, 3313-3320.	4.1	36
136	Sodium-promoted Ag/CeO2 nanospheres for catalytic oxidation of formaldehyde. Chemical Engineering Journal, 2018, 350, 419-428.	12.7	84
137	Performance of Modified La _{<i>x</i>} Sr _{1–<i>x</i>} MnO ₃ Perovskite Catalysts for NH ₃ Oxidation: TPD, DFT, and Kinetic Studies. Environmental Science & Technology, 2018, 52, 7443-7449.	10.0	67
138	Extraordinary Deactivation Offset Effect of Arsenic and Calcium on CeO ₂ –WO ₃ SCR Catalysts. Environmental Science & Technology, 2018, 52, 8578-8587.	10.0	73
139	Templateâ€free Scalable Synthesis of Flowerâ€like Co _{3â€<i>x</i>} Mn _{<i>x</i>} O ₄ Spinel Catalysts for Toluene Oxidation. ChemCatChem, 2018, 10, 3429-3434.	3.7	125
140	Identification of sulfate species and their influence on SCR performance of Cu/CHA catalyst. Catalysis Science and Technology, 2017, 7, 1523-1528.	4.1	50
141	High calcium resistance of CeO 2 –WO 3 SCR catalysts: Structure investigation and deactivation analysis. Chemical Engineering Journal, 2017, 317, 70-79.	12.7	82
142	Effects of seed particles Al2O3, Al2(SO4)3 and H2SO4 on secondary organic aerosol. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	3
143	The poisoning effects of phosphorus on CeO2-MoO3/TiO2 DeNO catalysts: NH3-SCR activity and the formation of N2O. Molecular Catalysis, 2017, 439, 15-24.	2.0	27
144	Bridging the reaction route of toluene total oxidation and the structure of ordered mesoporous Co 3 O 4 : The roles of surface sodium and adsorbed oxygen. Catalysis Today, 2017, 297, 173-181.	4.4	54

#	Article	IF	CITATIONS
145	Design strategies of surface basicity for NO oxidation over a novel Sn–Co–O catalyst in the presence of H2O. Catalysis Science and Technology, 2017, 7, 2057-2064.	4.1	14
146	Highly active and stable interface derived from Pt supported on Ni/Fe layered double oxides for HCHO oxidation. Catalysis Science and Technology, 2017, 7, 1573-1580.	4.1	69
147	MnO -CeO2 supported on Cu-SSZ-13: A novel SCR catalyst in a wide temperature range. Applied Catalysis A: General, 2017, 547, 146-154.	4.3	78
148	Impacts of Pb and SO ₂ Poisoning on CeO ₂ –WO ₃ /TiO ₂ –SiO ₂ SCR Catalyst. Environmental Science & Technology, 2017, 51, 11943-11949.	10.0	90
149	Novel Fe-Ce-O mixed metal oxides catalyst prepared by hydrothermal method for HgO oxidation in the presence of NH3. Catalysis Communications, 2017, 100, 210-213.	3.3	29
150	Heterogeneous Reactions between Toluene and NO ₂ on Mineral Particles under Simulated Atmospheric Conditions. Environmental Science & Technology, 2017, 51, 9596-9604.	10.0	41
151	The relationship between surface open cells of α-MnO ₂ and CO oxidation ability from a surface point of view. Journal of Materials Chemistry A, 2017, 5, 20911-20921.	10.3	38
152	A neutral and coordination regeneration method of Ca-poisoned V2O5-WO3/TiO2 SCR catalyst. Catalysis Communications, 2017, 100, 112-116.	3.3	30
153	Novel W-modified SnMnCeO catalyst for the selective catalytic reduction of NO with NH3. Catalysis Communications, 2017, 100, 117-120.	3.3	19
154	New insights into the promotional effects of Cu and Fe over V2O5-WO3/TiO2 NH3-SCR catalysts towards oxidation of Hg0. Catalysis Communications, 2017, 100, 169-172.	3.3	28
155	Surface Tuning of La _{0.5} Sr _{0.5} CoO ₃ Perovskite Catalysts by Acetic Acid for NO _{<i>x</i>} Storage and Reduction. Environmental Science & Technology, 2016, 50, 6442-6448.	10.0	108
156	Identification of active sites and reaction mechanism on low-temperature SCR activity over Cu-SSZ-13 catalysts prepared by different methods. Catalysis Science and Technology, 2016, 6, 6294-6304.	4.1	81
157	Hierarchical Core–Shell Al ₂ 0 ₃ @Pd-CoAlO Microspheres for Low-Temperature Toluene Combustion. ACS Catalysis, 2016, 6, 3433-3441.	11.2	273
158	Synthesis and evaluation of mesopore structured ZSM-5 and a CuZSM-5 catalyst for NH ₃ -SCR reaction: studies of simulated exhaust and engine bench testing. RSC Advances, 2016, 6, 102570-102581.	3.6	13
159	Investigation of the Poisoning Mechanism of Lead on the CeO ₂ —WO ₃ Catalyst for the NH ₃ –SCR Reaction via in Situ IR and Raman Spectroscopy Measurement. Environmental Science & Technology, 2016, 50, 9576-9582.	10.0	106
160	Comparison of the Structures and Mechanism of Arsenic Deactivation of CeO ₂ –MoO ₃ and CeO ₂ –WO ₃ SCR Catalysts. Journal of Physical Chemistry C, 2016, 120, 18005-18014.	3.1	64
161	Identification of the arsenic resistance on MoO3 doped CeO2/TiO2 catalyst for selective catalytic reduction of NOx with ammonia. Journal of Hazardous Materials, 2016, 318, 615-622.	12.4	67
162	NH3 selective catalytic reduction of NO: A large surface TiO2 support and its promotion of V2O5 dispersion on the prepared catalyst. Chinese Journal of Catalysis, 2016, 37, 878-887.	14.0	20

#	Article	IF	CITATIONS
163	Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NO by NH3. Chemical Engineering Journal, 2016, 299, 255-262.	12.7	188
164	Progress in research on catalysts for catalytic oxidation of formaldehyde. Chinese Journal of Catalysis, 2016, 37, 102-122.	14.0	189
165	Synthesis of three-dimensional ordered mesoporous MnO2 and its catalytic performance in formaldehyde oxidation. Chinese Journal of Catalysis, 2016, 37, 27-31.	14.0	72
166	Three-Dimensional Ordered Mesoporous MnO ₂ -Supported Ag Nanoparticles for Catalytic Removal of Formaldehyde. Environmental Science & Technology, 2016, 50, 2635-2640.	10.0	148
167	Chemical poison and regeneration of SCR catalysts for NO x removal from stationary sources. Frontiers of Environmental Science and Engineering, 2016, 10, 413-427.	6.0	100
168	A Facile Method for in Situ Preparation of the MnO ₂ /LaMnO ₃ Catalyst for the Removal of Toluene. Environmental Science & Technology, 2016, 50, 4572-4578.	10.0	272
169	Mechanism of arsenic poisoning on SCR catalyst of CeW/Ti and its novel efficient regeneration method with hydrogen. Applied Catalysis B: Environmental, 2016, 184, 246-257.	20.2	149
170	Pd–Co based spinel oxides derived from pd nanoparticles immobilized on layered double hydroxides for toluene combustion. Applied Catalysis B: Environmental, 2016, 181, 236-248.	20.2	207
171	MnO supported on Fe–Ti spinel: A novel Mn based low temperature SCR catalyst with a high N2 selectivity. Applied Catalysis B: Environmental, 2016, 181, 570-580.	20.2	199
172	Identification of the reaction pathway and reactive species for the selective catalytic reduction of NO with NH ₃ over cerium–niobium oxide catalysts. Catalysis Science and Technology, 2016, 6, 2136-2142.	4.1	49
173	Comparison of MoO3 and WO3 on arsenic poisoning V2O5/TiO2 catalyst: DRIFTS and DFT study. Applied Catalysis B: Environmental, 2016, 181, 692-698.	20.2	117
174	High activity and wide temperature window of Feâ€Cuâ€SZâ€13 in the selective catalytic reduction of NO with ammonia. AICHE Journal, 2015, 61, 3825-3837.	3.6	74
175	Selective Dissolution of A‧ite Cations in ABO ₃ Perovskites: A New Path to Highâ€Performance Catalysts. Angewandte Chemie - International Edition, 2015, 54, 7954-7957.	13.8	180
176	Silver–Cobalt Oxides Derived from Silver Nanoparticles Deposited on Layered Double Hydroxides for Methane Combustion. ChemCatChem, 2015, 7, 1966-1974.	3.7	20
177	Lean NO –SnO2–CeO2 catalyst at low temperatures. Catalysis Today, 2015, 258, 556-563.	4.4	6
178	Ceria promotion on the potassium resistance of MnOx/TiO2 SCR catalysts: An experimental and DFT study. Chemical Engineering Journal, 2015, 269, 44-50.	12.7	92
179	Novel MoO3/CeO2–ZrO2 catalyst for the selective catalytic reduction of NOx by NH3. Catalysis Communications, 2015, 65, 51-54.	3.3	79
180	Secondary aerosol formation and oxidation capacity in photooxidation in the presence of Al2O3 seed particles and SO2. Science China Chemistry, 2015, 58, 1426-1434.	8.2	14

#	Article	IF	CITATIONS
181	Selective catalytic reduction of NO with NH ₃ over novel iron–tungsten mixed oxide catalyst in a broad temperature range. Catalysis Science and Technology, 2015, 5, 4556-4564.	4.1	65
182	A novel Ce–Ta mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2015, 176-177, 338-346.	20.2	142
183	The promotional effect of MoO3 doped V2O5/TiO2 for chlorobenzene oxidation. Catalysis Communications, 2015, 69, 161-164.	3.3	34
184	The outstanding performance of LDH-derived mixed oxide Mn/CoAlO _x for Hg ⁰ oxidation. Catalysis Science and Technology, 2015, 5, 3536-3544.	4.1	27
185	Experimental and DFT studies on Sr-doped LaMnO ₃ catalysts for NO _x storage and reduction. Catalysis Science and Technology, 2015, 5, 2478-2485.	4.1	48
186	Design Strategies for CeO ₂ –MoO ₃ Catalysts for DeNO _{<i>x</i>} and Hg ^O Oxidation in the Presence of HCl: The Significance of the Surface Acid–Base Properties. Environmental Science & Technology, 2015, 49, 12388-12394.	10.0	81
187	Ultra hydrothermal stability of CeO2-WO3/TiO2 for NH3-SCR of NO compared to traditional V2O5-WO3/TiO2 catalyst. Catalysis Today, 2015, 258, 11-16.	4.4	61
188	Regeneration of Commercial SCR Catalysts: Probing the Existing Forms of Arsenic Oxide. Environmental Science & Technology, 2015, 49, 9971-9978.	10.0	89
189	Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13) Tj ETQq1 1	0.784314 2.8	rgBT /Overlo
190	A high-efficiency γ-MnO ₂ -like catalyst in toluene combustion. Chemical Communications, 2015, 51, 14977-14980.	4.1	153
191	Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers That Are Decorated with Zirconium Oxide (ZrO ₂). Environmental Science & Technology, 2015, 49, 11115-11124.	10.0	233
192	Recent Advances in Catalysts for Methane Combustion. Catalysis Surveys From Asia, 2015, 19, 140-171.	2.6	208
193	Reaction Pathway Investigation on the Selective Catalytic Reduction of NO with NH ₃ over Cu/SSZ-13 at Low Temperatures. Environmental Science & amp; Technology, 2015, 49, 467-473.	10.0	87
194	Deactivation and regeneration of a commercial SCR catalyst: Comparison with alkali metals and arsenic. Applied Catalysis B: Environmental, 2015, 168-169, 195-202.	20.2	180
195	An experimental and DFT study of the adsorption and oxidation of NH3 on a CeO2 catalyst modified by Fe, Mn, La and Y. Catalysis Today, 2015, 242, 300-307.	4.4	51
196	Effects of noble metals doped on mesoporous <scp>LaAlNi</scp> mixed oxide catalyst and identification of carbon deposit for reforming <scp>CH₄</scp> with <scp>CO₂</scp> . Journal of Chemical Technology and Biotechnology, 2014, 89, 372-381.	3.2	51
197	Editorial: advanced catalytic materials for environmental application. Science Bulletin, 2014, 59, 3955-3955.	1.7	0
198	Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS. Applied Catalysis B: Environmental, 2014, 144, 90-95.	20.2	400

#	Article	IF	CITATIONS
199	In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NO over Cu-SSZ-13 and Cu-SAPO-34 catalysts. Applied Catalysis B: Environmental, 2014, 156-157, 428-437.	20.2	293
200	Structure–activity relationship of VOx/CeO2 nanorod for NO removal with ammonia. Applied Catalysis B: Environmental, 2014, 144, 538-546.	20.2	144
201	Novel V2O5–CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2014, 158-159, 11-19.	20.2	218
202	Insight into Deactivation of Commercial SCR Catalyst by Arsenic: An Experiment and DFT Study. Environmental Science & Technology, 2014, 48, 13895-13900.	10.0	98
203	Competition of selective catalytic reduction and non selective catalytic reduction over MnO _x /TiO ₂ for NO removal: the relationship between gaseous NO concentration and N ₂ O selectivity. Catalysis Science and Technology, 2014, 4, 224-232.	4.1	76
204	A novel mechanism for poisoning of metal oxide SCR catalysts: base–acid explanation correlated with redox properties. Chemical Communications, 2014, 50, 10031-10034.	4.1	59
205	Dual Effect of Sulfation on the Selective Catalytic Reduction of NO with NH ₃ over MnO _{<i>x</i>} /TiO ₂ : Key Factor of NH ₃ Distribution. Industrial & Engineering Chemistry Research, 2014, 53, 5810-5819.	3.7	36
206	N ₂ Selectivity of NO Reduction by NH ₃ over MnO _{<i>x</i>} –CeO ₂ : Mechanism and Key Factors. Journal of Physical Chemistry C, 2014, 118, 21500-21508.	3.1	92
207	Decreasing effect and mechanism of FeSO 4 seed particles on secondary organic aerosol in $\hat{l}\pm$ -pinene photooxidation. Environmental Pollution, 2014, 193, 88-93.	7.5	27
208	Deactivation Mechanism of Potassium on the V ₂ O ₅ /CeO ₂ Catalysts for SCR Reaction: Acidity, Reducibility and Adsorbed-NO _{<i>x</i>} . Environmental Science & Technology, 2014, 48, 4515-4520.	10.0	137
209	Novel Mn–Ce–Ti Mixed-Oxide Catalyst for the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . ACS Applied Materials & Interfaces, 2014, 6, 14500-14508.	8.0	367
210	Mechanism of N ₂ O Formation during the Low-Temperature Selective Catalytic Reduction of NO with NH ₃ over Mn–Fe Spinel. Environmental Science & Technology, 2014, 48, 10354-10362.	10.0	225
211	Positive Effects of K ⁺ lons on Three-Dimensional Mesoporous Ag/Co ₃ O ₄ Catalyst for HCHO Oxidation. ACS Catalysis, 2014, 4, 2753-2762.	11.2	329
212	Three-Dimensionally Ordered Macroporous La _{0.6} Sr _{0.4} MnO ₃ Supported Ag Nanoparticles for the Combustion of Methane. Journal of Physical Chemistry C, 2014, 118, 14913-14928.	3.1	89
213	Characterization of CeO2–WO3 catalysts prepared by different methods for selective catalytic reduction of NO with NH3. Catalysis Communications, 2013, 40, 145-148.	3.3	61
214	Identification of the active sites on CeO2–WO3 catalysts for SCR of NOx with NH3: An in situ IR and Raman spectroscopy study. Applied Catalysis B: Environmental, 2013, 140-141, 483-492.	20.2	295
215	Advanced materials: adsorbent and catalyst for environmental application. Frontiers of Environmental Science and Engineering, 2013, 7, 301-301.	6.0	3
216	The abatement of major pollutants in air and water by environmental catalysis. Frontiers of Environmental Science and Engineering, 2013, 7, 302-325.	6.0	37

#	Article	IF	CITATIONS
217	Design Strategies for P-Containing Fuels Adaptable CeO ₂ –MoO ₃ Catalysts for DeNO _{<i>x</i>} : Significance of Phosphorus Resistance and N ₂ Selectivity. Environmental Science & Technology, 2013, 47, 11692-11699.	10.0	77
218	Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: Acidity, surface species and catalytic activity. Chemical Engineering Journal, 2013, 225, 520-527.	12.7	177
219	Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR. Journal of Hazardous Materials, 2013, 262, 782-788.	12.4	90
220	Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane. Journal of Catalysis, 2013, 307, 327-339.	6.2	206
221	A superior catalyst with dual redox cycles for the selective reduction of NOx by ammonia. Chemical Communications, 2013, 49, 7726.	4.1	182
222	Low temperature complete combustion of methane over cobalt chromium oxides catalysts. Catalysis Today, 2013, 201, 12-18.	4.4	100
223	Ge, Mn-doped CeO2–WO3 catalysts for NH3–SCR of NOx: Effects of SO2 and H2 regeneration. Catalysis Today, 2013, 201, 139-144.	4.4	89
224	Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3. Journal of Molecular Catalysis A, 2013, 376, 13-21.	4.8	68
225	The effect of SiO2 on a novel CeO2–WO3/TiO2 catalyst for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2013, 140-141, 276-282.	20.2	110
226	Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NO x photooxidation. Frontiers of Environmental Science and Engineering, 2013, 7, 1-9.	6.0	21
227	Ammonia adsorption on graphene and graphene oxide: a first-principles study. Frontiers of Environmental Science and Engineering, 2013, 7, 403-411.	6.0	111
228	Improvement of the Activity of γ-Fe ₂ O ₃ for the Selective Catalytic Reduction of NO with NH ₃ at High Temperatures: NO Reduction versus NH ₃ Oxidization. Industrial & amp; Engineering Chemistry Research, 2013, 52, 5601-5610.	3.7	118
229	Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust. Chemical Engineering Journal, 2013, 225, 323-330.	12.7	283
230	Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance. Applied Catalysis B: Environmental, 2013, 136-137, 19-28.	20.2	312
231	Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2013, 142-143, 290-297.	20.2	255
232	Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 677-683.	20.2	406
233	The relationship between structure and activity of MoO3–CeO2 catalysts for NO removal: influences of acidity and reducibility. Chemical Communications, 2013, 49, 6215.	4.1	113
234	Comparison on the Performance of α-Fe2O3 and γ-Fe2O3 for Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. Catalysis Letters, 2013, 143, 697-704.	2.6	101

#	Article	IF	CITATIONS
235	Improvement of Activity and SO ₂ Tolerance of Sn-Modified MnO _{<i>x</i>} –CeO ₂ Catalysts for NH ₃ -SCR at Low Temperatures. Environmental Science & Technology, 2013, 47, 5294-5301.	10.0	378
236	Substitution of WO ₃ in V ₂ O ₅ /WO ₃ –TiO ₂ by Fe ₂ O ₃ for selective catalytic reduction of NO with NH3. Catalysis Science and Technology, 2013, 3, 161-168.	4.1	90
237	Enhancement of Activity and Sulfur Resistance of CeO ₂ Supported on TiO ₂ –SiO ₂ for the Selective Catalytic Reduction of NO by NH ₃ . Environmental Science & Technology, 2012, 46, 6182-6189.	10.0	253
238	Recent advances in the selective catalytic reduction of NOx by hydrogen in the presence of oxygen. Energy and Environmental Science, 2012, 5, 8799.	30.8	145
239	Design Strategies for Development of SCR Catalyst: Improvement of Alkali Poisoning Resistance and Novel Regeneration Method. Environmental Science & Technology, 2012, 46, 12623-12629.	10.0	134
240	Effect of Sn on MnO $\hat{a} \in CeO2$ catalyst for SCR of NO by ammonia: Enhancement of activity and remarkable resistance to SO2. Catalysis Communications, 2012, 27, 54-57.	3.3	155
241	Relations between iron sites and performance of Fe/HBEA catalysts prepared by two different methods for NH3-SCR. Chemical Engineering Journal, 2012, 209, 652-660.	12.7	46
242	Alkali Metal Poisoning of a CeO ₂ –WO ₃ Catalyst Used in the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ : an Experimental and Theoretical Study. Environmental Science & Technology, 2012, 46, 2864-2869.	10.0	200
243	A novel magnetic Fe–Ti–V spinel catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range. Catalysis Science and Technology, 2012, 2, 915.	4.1	53
244	Catalytically Active Singleâ€Atom Sites Fabricated from Silver Particles. Angewandte Chemie - International Edition, 2012, 51, 4198-4203.	13.8	323
245	Manganese doped CeO2–WO3 catalysts for the selective catalytic reduction of NO with NH3: An experimental and theoretical study. Catalysis Communications, 2012, 19, 127-131.	3.3	55
246	Influence of calcination temperature on Fe/HBEA catalyst for the selective catalytic reduction of NO with NH3. Catalysis Today, 2012, 184, 145-152.	4.4	48
247	Fe–Ti spinel for the selective catalytic reduction of NO with NH3: Mechanism and structure–activity relationship. Applied Catalysis B: Environmental, 2012, 117-118, 73-80.	20.2	178
248	Distinguished Roles with Various Vanadium Loadings Of CoCr _{2–<i>x</i>} V _{<i>x</i>} O ₄ (<i>x</i> = 0–0.20) for Methane Combustion. Journal of Physical Chemistry C, 2011, 115, 17400-17408.	3.1	47
249	Catalytic Performance, Characterization, and Mechanism Study of Fe ₂ (SO ₄) ₃ /TiO ₂ Catalyst for Selective Catalytic Reduction of NOx by Ammonia. Journal of Physical Chemistry C, 2011, 115, 7603-7612.	3.1	130
250	Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: Performance, mechanism and kinetic study. Applied Catalysis B: Environmental, 2011, 110, 71-80.	20.2	429
251	Deactivation performance and mechanism of alkali (earth) metals on V2O5–WO3/TiO2 catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas. Catalysis Today, 2011, 175, 189-195.	4.4	62
252	Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catalysis Today, 2011, 175, 147-156.	4.4	811

#	Article	IF	CITATIONS
253	Catalytic combustion of methane over cerium-doped cobalt chromite catalysts. Catalysis Today, 2011, 175, 216-222.	4.4	60
254	CeO2–WO3 Mixed Oxides for the Selective Catalytic Reduction of NO x by NH3 Over a Wide Temperature Range. Catalysis Letters, 2011, 141, 1859-1864.	2.6	132
255	Mechanism of Selective Catalytic Reduction of NOx with NH3 over CeO2-WO3 Catalysts. Chinese Journal of Catalysis, 2011, 32, 836-841.	14.0	82
256	The poisoning effect of alkali metals doping over nano V2O5–WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chemical Engineering Journal, 2011, 170, 531-537.	12.7	341
257	Removal of gaseous elemental mercury over a CeO2–WO3/TiO2 nanocomposite in simulated coal-fired flue gas. Chemical Engineering Journal, 2011, 170, 512-517.	12.7	135
258	Synthesis, characterization and catalytic activities of vanadium–cryptomelane manganese oxides in low-temperature NO reduction with NH3. Applied Catalysis A: General, 2011, 393, 323-330.	4.3	91
259	Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3. Applied Catalysis B: Environmental, 2010, 99, 156-162.	20.2	262
260	Knowledge and know-how in improving the sulfur tolerance of deNOx catalysts. Catalysis Today, 2010, 153, 95-102.	4.4	42
261	Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia. Catalysis Today, 2010, 153, 77-83.	4.4	300
262	Mechanism of Propene Poisoning on Fe-ZSM-5 for Selective Catalytic Reduction of NO _{<i>x</i>} with Ammonia. Environmental Science & Technology, 2010, 44, 1799-1805.	10.0	118
263	Role of Lattice Oxygen and Lewis Acid on Ethanol Oxidation over OMS-2 Catalyst. Journal of Physical Chemistry C, 2010, 114, 10544-10550.	3.1	69
264	DRIFT Study on Ceriumâ^'Tungsten/Titiania Catalyst for Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . Environmental Science & Technology, 2010, 44, 9590-9596.	10.0	642
265	Effects of Precursor and Sulfation on OMS-2 Catalyst for Oxidation of Ethanol and Acetaldehyde at Low Temperatures. Environmental Science & Technology, 2010, 44, 4282-4287.	10.0	146
266	NO x Storage at Low Temperature over MnO x –SnO2 Binary Metal Oxide Prepared Through Different Hydrothermal Process. Catalysis Letters, 2009, 127, 107-112.	2.6	31
267	Novel Y2O3 Doped MnO x Binary Metal Oxides for NO x Storage at Low Temperature in Lean Burn Condition. Catalysis Letters, 2009, 129, 104-110.	2.6	4
268	OMS-2 Catalysts for Formaldehyde Oxidation: Effects of Ce and Pt on Structure and Performance of the Catalysts. Catalysis Letters, 2009, 131, 500-505.	2.6	75
269	Effects of support acidity on the reaction mechanisms of selective catalytic reduction of NO by CH4 in excess oxygen. Frontiers of Environmental Science and Engineering in China, 2009, 3, 186-193.	0.8	1
270	Complete oxidation of methane on Co3O4-SnO2 catalysts. Frontiers of Environmental Science and Engineering in China, 2009, 3, 265-270.	0.8	14

#	Article	IF	CITATIONS
271	Non-thermal plasma-assisted catalytic NOx storage over Pt/Ba/Al2O3 at low temperatures. Applied Catalysis B: Environmental, 2009, 90, 360-367.	20.2	37
272	Promotional mechanism of tungstation on selective catalytic reduction of NOx by methane over In/WO3/ZrO2. Applied Catalysis B: Environmental, 2009, 91, 123-134.	20.2	49
273	Promotional Effect of Ce-doped V ₂ O ₅ -WO ₃ /TiO ₂ with Low Vanadium Loadings for Selective Catalytic Reduction of NO <i>_x</i> by NH ₃ . Journal of Physical Chemistry C, 2009, 113, 21177-21184.	3.1	430
274	Effect of Highly Concentrated Dry (NH4)2SO4 Seed Aerosols on Ozone and Secondary Organic Aerosol Formation in Aromatic Hydrocarbon/NOx Photooxidation Systems. ACS Symposium Series, 2009, , 111-126.	0.5	1
275	Selective Catalytic Reduction of NOx with CH4 over the In/Sulfated TiO2 Catalyst. Catalysis Letters, 2008, 122, 138-143.	2.6	9
276	Second organic aerosol formation by irradiation of α-pinene-NOx-H2O in an indoor smog chamber for atmospheric chemistry and physics. Science Bulletin, 2008, 53, 3294-3300.	9.0	4
277	Improvement of catalytic activity and sulfur-resistance of Ag/TiO2–Al2O3 for NO reduction with propene under lean burn conditions. Applied Catalysis B: Environmental, 2008, 80, 202-213.	20.2	88
278	MnOx-SnO2 Catalysts Synthesized by a Redox Coprecipitation Method for Selective Catalytic Reduction of NO by NH3. Chinese Journal of Catalysis, 2008, 29, 531-536.	14.0	29
279	Low temperature selective catalytic reduction of NO with NH3 over amorphous MnO catalysts prepared by three methods. Catalysis Communications, 2007, 8, 329-334.	3.3	233
280	Effects of precursors on the surface Mn species and the activities for NO reduction over MnO /TiO2 catalysts. Catalysis Communications, 2007, 8, 1896-1900.	3.3	186
281	Novel promoting effect of SO2 on the selective catalytic reduction of NO by ammonia over Co3O4 catalyst. Catalysis Communications, 2007, 8, 2096-2099.	3.3	50
282	Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catalysis Today, 2007, 126, 406-411.	4.4	160
283	Construction and characterization of an atmospheric simulation smog chamber. Advances in Atmospheric Sciences, 2007, 24, 250-258.	4.3	45
284	Comparison of NO adsorbing ability and process on Pt/Mg/Al oxide catalysts prepared by different methods. Catalysis Letters, 2007, 116, 155-160.	2.6	5
285	Promotional effect of Ce on the activity of In/W–ZrO2 for selective reduction of NO x with methane. Catalysis Letters, 2007, 117, 68-72.	2.6	2
286	Air pollution and its control in China. Frontiers of Environmental Science and Engineering in China, 2007, 1, 129-142.	0.8	82
287	Selective catalytic reduction of NO x from exhaust of lean-burn engine over Ag-Al2O3/cordierite catalyst. Frontiers of Environmental Science and Engineering in China, 2007, 1, 143-146.	0.8	3
288	Complete Combustion of Methane over Indium Tin Oxides Catalysts. Environmental Science & Technology, 2006, 40, 6455-6459.	10.0	40

#	Article	IF	CITATIONS
289	Influence of Preparation Methods of In2O3/Al2O3 Catalyst on Selective Catalytic Reduction of NO by Propene in the Presence of Oxygen. Catalysis Letters, 2005, 103, 75-82.	2.6	30
290	Cooperation of reducing species for NO reduction over Ag/Al <subscript>2</subscript> O <subscript>3</subscript> under oxidizing conditions. Reaction Kinetics and Catalysis Letters, 2005, 84, 61-67.	0.6	0
291	Cooperation of reducing species for NO reduction over Ag/Al2O3 under oxidizing conditions. Reaction Kinetics and Catalysis Letters, 2005, 84, 61-67.	0.6	3
292	High Efficiency of Noble Metal and Metal Oxide Catalyst Systems for the Selective Reduction of NO with Propene in Lean Exhaust Gas. Topics in Catalysis, 2004, 30/31, 81-84.	2.8	10
293	Two-stage catalytic system of Sn/Al2O3and Pt/Al2O3for NO reduction by propene in lean conditions. Reaction Kinetics and Catalysis Letters, 2004, 81, 265-272.	0.6	Ο
294	The activity and characterization of sol–gel Sn/Al2O3 catalyst for selective catalytic reduction of NOx in the presence of oxygen. Catalysis Today, 2004, 90, 215-221.	4.4	40
295	Cooperation of Pt/Al2O3 and In/Al2O3 catalysts for NO reduction by propene in lean burn condition. Applied Catalysis A: General, 2004, 265, 43-52.	4.3	27
296	Title is missing!. Reaction Kinetics and Catalysis Letters, 2003, 80, 45-52.	0.6	10
297	Title is missing!. Reaction Kinetics and Catalysis Letters, 2003, 80, 75-80.	0.6	5