Thomas Bein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1076099/publications.pdf

Version: 2024-02-01

501 papers 49,389 citations

117 h-index 204 g-index

544 all docs 544 docs citations

544 times ranked 44539 citing authors

#	Article	IF	CITATIONS
1	Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9, 687-692.	15.6	3,627
2	Reversible Hydration of CH ₃ NH ₃ Pbl ₃ in Films, Single Crystals, and Solar Cells. Chemistry of Materials, 2015, 27, 3397-3407.	3.2	1,133
3	Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science, 1994, 264, 1757-1759.	6.0	1,082
4	Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2012, 51, 3591-3595.	7.2	1,021
5	"Coulomb Staircase" at Room Temperature in a Self-Assembled Molecular Nanostructure. Science, 1996, 272, 1323-1325.	6.0	987
6	Inclusion Chemistry in Periodic Mesoporous Hosts. Chemistry of Materials, 1998, 10, 2950-2963.	3.2	919
7	Covalent Organic Frameworks: Structures, Synthesis, and Applications. Advanced Functional Materials, 2018, 28, 1705553.	7.8	892
8	Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 2014, 26, 435-451.	3.2	780
9	Mechanism of Zeolite A Nanocrystal Growth from Colloids at Room Temperature. Science, 1999, 283, 958-960.	6.0	593
10	Highly stable, phase pure Cs ₂ AgBiBr ₆ double perovskite thin films for optoelectronic applications. Journal of Materials Chemistry A, 2017, 5, 19972-19981.	5.2	509
11	Oriented Growth of the Metal Organic Framework Cu3(BTC)2(H2O)3·xH2O Tunable with Functionalized Self-Assembled Monolayers. Journal of the American Chemical Society, 2007, 129, 8054-8055.	6.6	499
12	Mesoporosity – a new dimension for zeolites. Chemical Society Reviews, 2013, 42, 3689.	18.7	489
13	Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. Journal of Physical Chemistry Letters, 2015, 6, 1249-1253.	2.1	477
14	Lower tidal volume strategy (â‰^3Âml/kg) combined with extracorporeal CO2 removal versus â€~conventional' protective ventilation (6Âml/kg) in severe ARDS. Intensive Care Medicine, 2013, 39, 847-856.	,.3.9	474
15	Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Letters, 2015, 15, 6095-6101.	4.5	461
16	Iron-Doped Nickel Oxide Nanocrystals as Highly Efficient Electrocatalysts for Alkaline Water Splitting. ACS Nano, 2015, 9, 5180-5188.	7.3	446
17	Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nature Chemistry, 2016, 8, 310-316.	6.6	436
18	Synthesis and Applications of Molecular Sieve Layers and Membranesâ€. Chemistry of Materials, 1996, 8, 1636-1653.	3.2	433

#	Article	lF	Citations
19	Structure and optical properties of cadmium sulfide superclusters in zeolite hosts. Journal of the American Chemical Society, 1989, 111, 530-540.	6.6	428
20	A Photoconductive Thienothiopheneâ€Based Covalent Organic Framework Showing Charge Transfer Towards Included Fullerene. Angewandte Chemie - International Edition, 2013, 52, 2920-2924.	7.2	385
21	Preparation of Single-Phase Films of CH ₃ Pb(l _{1–<i>x</i>} Br _{<i>x</i>}) ₃ with Sharp Optical Band Edges. Journal of Physical Chemistry Letters, 2014, 5, 2501-2505.	2.1	385
22	Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Medicine, 2016, 42, 889-896.	3.9	382
23	Colloidal Suspensions of Nanometer-Sized Mesoporous Silica. Advanced Functional Materials, 2007, 17, 605-612.	7.8	379
24	A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia*. Critical Care Medicine, 2006, 34, 1372-1377.	0.4	369
25	Conducting Carbon Wires in Ordered, Nanometer-Sized Channels. Science, 1994, 266, 1013-1015.	6.0	363
26	Extraction of Photogenerated Electrons and Holes from a Covalent Organic Framework Integrated Heterojunction. Journal of the American Chemical Society, 2014, 136, 17802-17807.	6.6	354
27	Three-Dimensional Titanium Dioxide Nanomaterials. Chemical Reviews, 2014, 114, 9487-9558.	23.0	349
28	Solution Depositionâ€Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells. Advanced Energy Materials, 2014, 4, 1400355.	10.2	325
29	Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting. Journal of the American Chemical Society, 2018, 140, 2085-2092.	6.6	320
30	Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as Highâ€Performance Catalysts for Electrochemical Water Splitting. Advanced Functional Materials, 2014, 24, 3123-3129.	7.8	303
31	Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700264.	10.2	295
32	Biotin–Avidin as a Proteaseâ€Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie - International Edition, 2009, 48, 3092-3095.	7.2	278
33	Hybrid Perovskite/Perovskite Heterojunction Solar Cells. ACS Nano, 2016, 10, 5999-6007.	7.3	276
34	One-Step Synthesis of Hierarchical Zeolite Beta via Network Formation of Uniform Nanocrystals. Journal of the American Chemical Society, 2011, 133, 5284-5295.	6.6	272
35	Optoelectronic processes in covalent organic frameworks. Chemical Society Reviews, 2021, 50, 1813-1845.	18.7	264
36	High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous and Mesoporous Materials, 2009, 117, 111-117.	2.2	263

#	Article	IF	Citations
37	Capturing Ultrasmall EMT Zeolite from Template-Free Systems. Science, 2012, 335, 70-73.	6.0	260
38	A low cost azomethine-based hole transporting material for perovskite photovoltaics. Journal of Materials Chemistry A, 2015, 3, 12159-12162.	5.2	260
39	Room Temperature Synthesis of Covalent–Organic Framework Films through Vapor-Assisted Conversion. Journal of the American Chemical Society, 2015, 137, 1016-1019.	6.6	257
40	Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide. Journal of Physical Chemistry Letters, 2014, 5, 2791-2795.	2.1	250
41	Gold Nanoshells Improve Single Nanoparticle Molecular Sensors. Nano Letters, 2004, 4, 1853-1857.	4.5	246
42	Colloidal Suspensions of Functionalized Mesoporous Silica Nanoparticles. ACS Nano, 2008, 2, 791-799.	7.3	239
43	On the road towards electroactive covalent organic frameworks. Chemical Communications, 2014, 50, 5531-5546.	2.2	237
44	Multiple Coreâ^'Shell Functionalized Colloidal Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2009, 131, 11361-11370.	6.6	226
45	Surface reactions on thin layers of silane coupling agents. Langmuir, 1993, 9, 2965-2973.	1.6	225
46	Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. Journal of Materials Chemistry, 2010, 20, 8693.	6.7	223
47	Visualizing single-molecule diffusion in mesoporous materials. Nature, 2007, 450, 705-708.	13.7	221
48	Selective Functionalization of the Outer and Inner Surfaces in Mesoporous Silica Nanoparticles. Chemistry of Materials, 2008, 20, 7207-7214.	3.2	220
49	Imparting Functionality to MOF Nanoparticles by External Surface Selective Covalent Attachment of Polymers. Chemistry of Materials, 2016, 28, 3318-3326.	3.2	218
50	Electron Microscopy Reveals the Nucleation Mechanism of Zeolite Y from Precursor Colloids. Angewandte Chemie - International Edition, 1999, 38, 3201-3204.	7.2	213
51	Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous and Mesoporous Materials, 2010, 132, 60-71.	2.2	213
52	Perylene-Based Covalent Organic Frameworks for Acid Vapor Sensing. Journal of the American Chemical Society, 2019, 141, 15693-15699.	6.6	212
53	Synthesis of Well-Ordered COF Monolayers: Surface Growth of Nanocrystalline Precursors <i>versus</i> Direct On-Surface Polycondensation. ACS Nano, 2011, 5, 9737-9745.	7.3	211
54	Exceptional Ion-Exchange Selectivity in a Flexible Open Framework Lanthanum(III)tetrakisphosphonate. Journal of the American Chemical Society, 2009, 131, 18112-18118.	6.6	209

#	Article	IF	CITATIONS
55	A Programmable DNAâ€Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie - International Edition, 2010, 49, 4734-4737.	7.2	206
56	Synchronized Offset Stacking: A Concept for Growing Large-Domain and Highly Crystalline 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 16703-16710.	6.6	199
57	Variation of the Si/Al ratio in nanosized zeolite Beta crystals. Microporous and Mesoporous Materials, 2006, 90, 237-245.	2.2	197
58	Isoreticular Two-Dimensional Covalent Organic Frameworks Synthesized by On-Surface Condensation of Diboronic Acids. ACS Nano, 2012, 6, 7234-7242.	7.3	194
59	Inclusion of polyaniline filaments in zeolite molecular sieves. The Journal of Physical Chemistry, 1989, 93, 6270-6272.	2.9	191
60	Intrazeolite assembly of a chiral manganese salen epoxidation catalyst. Chemical Communications, 1997, , 901-902.	2.2	191
61	A Long-Term View on Perovskite Optoelectronics. Accounts of Chemical Research, 2016, 49, 339-346.	7.6	189
62	Sequential Pore Wall Modification in a Covalent Organic Framework for Application in Lactic Acid Adsorption. Chemistry of Materials, 2016, 28, 626-631.	3.2	189
63	Oriented Thin Films of a Benzodithiophene Covalent Organic Framework. ACS Nano, 2014, 8, 4042-4052.	7.3	188
64	MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. Chemical Communications, 2015, 51, 15752-15755.	2.2	186
65	Polyaniline Wires in Oxidant-Containing Mesoporous Channel Hosts. Chemistry of Materials, 1994, 6, 1109-1112.	3.2	184
66	Understanding the Role of Cesium and Rubidium Additives in Perovskite Solar Cells: Trap States, Charge Transport, and Recombination. Advanced Energy Materials, 2018, 8, 1703057.	10.2	184
67	Direct growth of Cu3(BTC)2(H2O)3·xH2O thin films on modified QCM-gold electrodes – Water sorption isotherms. Microporous and Mesoporous Materials, 2008, 114, 380-386.	2.2	181
68	Spectrally Switchable Photodetection with Near-Infrared-Absorbing Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 12035-12042.	6.6	181
69	Talented Mesoporous Silica Nanoparticles. Chemistry of Materials, 2017, 29, 371-388.	3.2	181
70	Recycling Perovskite Solar Cells To Avoid Lead Waste. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12881-12886.	4.0	176
71	Associations between ventilator settings during extracorporeal membrane oxygenation for refractory hypoxemia and outcome in patients with acute respiratory distress syndrome: a pooled individual patient data analysis. Intensive Care Medicine, 2016, 42, 1672-1684.	3.9	176
72	Directing the Structure of Metal–Organic Frameworks by Oriented Surface Growth on an Organic Monolayer. Angewandte Chemie - International Edition, 2008, 47, 5777-5779.	7.2	175

#	Article	IF	CITATIONS
73	Synthesis, Structure and Properties of Related MicroporousN,Nâ€-Piperazinebismethylenephosphonates of Aluminum and Titanium. Chemistry of Materials, 2006, 18, 1451-1457.	3.2	173
74	Exploration of nanostructured channel systems with single-molecule probes. Nature Materials, 2007, 6, 303-310.	13.3	171
75	Multifunctional Nanoparticles by Coordinative Self-Assembly of His-Tagged Units with Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 2359-2368.	6.6	171
76	Solvatochromic covalent organic frameworks. Nature Communications, 2018, 9, 3802.	5.8	171
77	Targeted Drug Delivery in Cancer Cells with Red-Light Photoactivated Mesoporous Silica Nanoparticles. Nano Letters, 2013, 13, 2576-2583.	4.5	169
78	Entrapment of PMMA Polymer Strands in Micro- and Mesoporous Materials. Chemistry of Materials, 1998, 10, 1841-1852.	3.2	168
79	High-Throughput Synthesis of Phosphonate-Based Inorganic–Organic Hybrid Compounds under Hydrothermal Conditions. Angewandte Chemie - International Edition, 2004, 43, 749-752.	7.2	168
80	Click Chemistry for High-Density Biofunctionalization of Mesoporous Silica. Journal of the American Chemical Society, 2008, 130, 12558-12559.	6.6	168
81	A Covalent Organic Framework with 4 nm open pores. Chemical Communications, 2011, 47, 1707.	2.2	168
82	Photoactive and Conducting Covalent Organic Frameworks. Advanced Energy Materials, 2017, 7, 1700387.	10.2	168
83	Impact of Rubidium and Cesium Cations on the Moisture Stability of Multiple-Cation Mixed-Halide Perovskites. ACS Energy Letters, 2017, 2, 2212-2218.	8.8	167
84	Protease-Mediated Release of Chemotherapeutics from Mesoporous Silica Nanoparticles to <i>ex Vivo</i> Human and Mouse Lung Tumors. ACS Nano, 2015, 9, 2377-2389.	7.3	165
85	Encapsulation of Polypyrrole Chains in Zeolite Channels. Angewandte Chemie International Edition in English, 1989, 28, 1692-1694.	4.4	162
86	Microporous Films Prepared by Spin-Coating Stable Colloidal Suspensions of Zeolites. Advanced Materials, 2001, 13, 1880.	11.1	160
87	Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes. Physical Chemistry Chemical Physics, 2014, 16, 24610-24620.	1.3	159
88	Microtubular Selfâ€Assembly of Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 846-850.	7.2	158
89	Growth of oriented molecular sieve crystals on organophosphonate films. Nature, 1994, 368, 834-836.	13.7	157
90	Nanosized zeolite films for vapor-sensing applications. Microporous and Mesoporous Materials, 2001, 50, 159-166.	2.2	157

#	Article	IF	CITATIONS
91	Role of Endosomal Escape for Disulfide-Based Drug Delivery from Colloidal Mesoporous Silica Evaluated by Live-Cell Imaging. Nano Letters, 2010, 10, 3684-3691.	4.5	155
92	Nanoscale Porous Framework of Lithium Titanate for Ultrafast Lithium Insertion. Angewandte Chemie - International Edition, 2012, 51, 7459-7463.	7.2	155
93	Three-dimensionally confined diluted magnetic semiconductor clusters: Zn1â^'xMnxS. Solid State Communications, 1991, 77, 33-38.	0.9	151
94	Colchicine-Loaded Lipid Bilayer-Coated 50 nm Mesoporous Nanoparticles Efficiently Induce Microtubule Depolymerization upon Cell Uptake. Nano Letters, 2010, 10, 2484-2492.	4.5	151
95	From Highly Crystalline to Outer Surface-Functionalized Covalent Organic Frameworks—A Modulation Approach. Journal of the American Chemical Society, 2016, 138, 1234-1239.	6.6	147
96	Vertical Aluminophosphate Molecular Sieve Crystals Grown at Inorganic-Organic Interfaces. Science, 1994, 265, 1839-1841.	6.0	145
97	One-dimensional metal–organic framework photonic crystals used as platforms for vapor sorption. Journal of Materials Chemistry, 2012, 22, 10356.	6.7	144
98	On-Surface Synthesis of Highly Oriented Thin Metal–Organic Framework Films through Vapor-Assisted Conversion. Journal of the American Chemical Society, 2018, 140, 4812-4819.	6.6	144
99	Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases. Microporous and Mesoporous Materials, 2003, 64, 165-174.	2.2	143
100	Niobium-Doped Titania Nanoparticles: Synthesis and Assembly into Mesoporous Films and Electrical Conductivity. ACS Nano, 2010, 4, 5373-5381.	7.3	138
101	Molecular sieve sensors for selective detection at the nanogram level. Journal of the American Chemical Society, 1989, 111, 7640-7641.	6.6	137
102	Humidity Sensing with Ultrathin LTA-Type Molecular Sieve Films Grown on Piezoelectric Devices. Chemistry of Materials, 2001, 13, 901-905.	3.2	137
103	Validating Metalâ€Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications. Advanced Healthcare Materials, 2017, 6, 1600818.	3.9	137
104	Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery. Nanoscale, 2015, 7, 7953-7964.	2.8	134
105	Oriented Nanoscale Films of Metal–Organic Frameworks By Roomâ€Temperature Gelâ€Layer Synthesis. Angewandte Chemie - International Edition, 2010, 49, 7225-7228.	7.2	132
106	Thin Films of (3-Aminopropyl)triethoxysilane on Aluminum Oxide and Gold Substrates. Langmuir, 1995, 11, 3061-3067.	1.6	131
107	Nanosized AlPO4-5 Molecular Sieves and Ultrathin Films Prepared by Microwave Synthesis. Chemistry of Materials, 1998, 10, 4030-4036.	3.2	131
108	Tuning the Structure and Orientation of Hexagonally Ordered Mesoporous Channels in Anodic Alumina Membrane Hosts: A 2D Small-Angle X-ray Scattering Study. Angewandte Chemie - International Edition, 2006, 45, 1134-1138.	7.2	131

#	Article	lF	CITATIONS
109	Synthesis and Characterization of a New Three-Dimensional Lanthanide Carboxyphosphonate:  Ln4(H2O)7[O2Câ^'C5H10Nâ^'CH2-PO3]4(H2O)5. Inorganic Chemistry, 2004, 43, 3159-3163.	1.9	130
110	Switching on and off Interlayer Correlations and Porosity in 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12570-12581.	6.6	130
111	Synthesis of Ordered Mesoporous Methacrylate Hybrid Systems:  Hosts for Molecular Polymer Composites. Chemistry of Materials, 1999, 11, 665-673.	3.2	127
112	Nanosized SAPO-34 Synthesized from Colloidal Solutions. Chemistry of Materials, 2008, 20, 2956-2963.	3.2	127
113	Molecular recognition on acoustic wave devices: sorption in chemically anchored zeolite monolayers. The Journal of Physical Chemistry, 1992, 96, 9387-9393.	2.9	126
114	Highly Selective Epoxidation Catalysts Derived from Intrazeolite Trimethyltriazacyclononane-Manganese Complexes. Angewandte Chemie International Edition in English, 1996, 35, 2211-2213.	4.4	124
115	Enforcing Extended Porphyrin J-Aggregate Stacking in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 16544-16552.	6.6	123
116	Oligothiophene-Bridged Conjugated Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8194-8199.	6.6	121
117	Mechanism of the Transformation of Silica Precursor Solutions into Si-MFI Zeolite. Angewandte Chemie - International Edition, 2002, 41, 2558-2561.	7.2	120
118	Ultrasmall Titania Nanocrystals and Their Direct Assembly into Mesoporous Structures Showing Fast Lithium Insertion. Journal of the American Chemical Society, 2010, 132, 12605-12611.	6.6	119
119	Medical nanoparticles for next generation drug delivery to the lungs. European Respiratory Journal, 2014, 44, 765-774.	3.1	118
120	Colloidal suspensions of mercapto-functionalized nanosized mesoporous silica. Journal of Materials Chemistry, 2007, 17, 624-631.	6.7	117
121	Directional Charge-Carrier Transport in Oriented Benzodithiophene Covalent Organic Framework Thin Films. ACS Nano, 2017, 11, 2706-2713.	7.3	117
122	Microwave synthesis of molecular sieve MCM-41. Chemical Communications, 1996, , 925.	2.2	111
123	Optical Sensing in Nanopores. Encapsulation of the Solvatochromic Dye Nile Red in Zeolites. Journal of the American Chemical Society, 1999, 121, 448-449.	6.6	111
124	Highly selective epoxidation of alkenes and styrenes with H2O2 and manganese complexes of the cyclic triamine 1,4,7-trimethyl-1,4,7-triazacyclononane. Chemical Communications, 1996, , 917.	2.2	107
125	Self-assembled monolayers of dithiols, diisocyanides, and isocyanothiols on gold: â€chemically sticky' surfaces for covalent attachment of metal clusters and studies of interfacial electron transfer. Inorganica Chimica Acta, 1996, 242, 115-124.	1.2	107
126	Adsorption of Diisocyanides on Gold. Langmuir, 2000, 16, 6183-6187.	1.6	107

#	Article	IF	CITATIONS
127	Stabilization of cadmium selenide molecular clusters in zeolite Y: EXAFS and x-ray diffraction studies. Journal of the American Chemical Society, 1989, 111, 2564-2571.	6.6	106
128	Highly sensitive and selective fluoride detection in water through fluorophore release from a metal-organic framework. Scientific Reports, 2013, 3, 2562.	1.6	106
129	Synthesis and characterization of group III-V semiconductor clusters: gallium phosphide GaP in zeolite Y. Journal of the American Chemical Society, 1989, 111, 8006-8007.	6.6	105
130	Characterization of selenium-loaded molecular sieves A, X, Y, AlPO-5, and mordenite. Inorganic Chemistry, 1988, 27, 221-228.	1.9	104
131	Poly(acrylonitrile) chains in zeolite channels: polymerization and pyrolysis. Chemistry of Materials, 1992, 4, 819-824.	3.2	104
132	Mesoporous Structures Confined in Anodic Alumina Membranes. Advanced Materials, 2011, 23, 2395-2412.	11.1	104
133	Synthesis of Perfectly Oriented and Micrometer-Sized MAPbBr ₃ Perovskite Crystals for Thin-Film Photovoltaic Applications. ACS Energy Letters, 2016, 1, 150-154.	8.8	103
134	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102
135	Oriented Thin Films of Electroactive Triphenylene Catecholate-Based Two-Dimensional Metal–Organic Frameworks. ACS Nano, 2019, 13, 6711-6719.	7.3	101
136	Zeolite Thin Films with Tunable Molecular Sieve Function. Journal of the American Chemical Society, 1995, 117, 9990-9994.	6.6	100
137	Zinc Ferrite Photoanode Nanomorphologies with Favorable Kinetics for Waterâ€6plitting. Advanced Functional Materials, 2016, 26, 4435-4443.	7.8	99
138	Highly selective olefin epoxidation with manganese triazacyclononane complexes: Impact of ligand substitution. Journal of Organometallic Chemistry, 1996, 520, 195-200.	0.8	97
139	Tailoring the Morphology of Mesoporous Titania Thin Films through Biotemplating with Nanocrystalline Cellulose. Journal of the American Chemical Society, 2014, 136, 5930-5937.	6.6	97
140	Highly efficient siRNA delivery from core–shell mesoporous silica nanoparticles with multifunctional polymer caps. Nanoscale, 2016, 8, 4007-4019.	2.8	97
141	Hierarchical Zeolite Beta via Nanoparticle Assembly with a Cationic Polymer. Chemistry of Materials, 2011, 23, 4301-4310.	3.2	96
142	A Closer Look into Two-Step Perovskite Conversion with X-ray Scattering. Journal of Physical Chemistry Letters, 2015, 6, 1265-1269.	2.1	96
143	Influence of the orientation of methylammonium lead iodide perovskite crystals on solar cell performance. APL Materials, 2014, 2, .	2.2	95
144	Degradable Drug Carriers: Vanishing Mesoporous Silica Nanoparticles. Chemistry of Materials, 2019, 31, 4364-4378.	3.2	95

#	Article	IF	CITATIONS
145	Efficient OER Catalyst with Low Ir Volume Density Obtained by Homogeneous Deposition of Iridium Oxide Nanoparticles on Macroporous Antimonyâ€Doped Tin Oxide Support. Advanced Functional Materials, 2020, 30, 1906670.	7.8	95
146	Fast-Switching Vis–IR Electrochromic Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 7351-7357.	6.6	95
147	Mesoporous Silica Nanoparticles as pH-Responsive Carrier for the Immune-Activating Drug Resiquimod Enhance the Local Immune Response in Mice. ACS Nano, 2021, 15, 4450-4466.	7.3	94
148	Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale, 2016, 8, 938-948.	2.8	93
149	High-throughput investigation of metal carboxyarylphosphonate hybrid compounds. Journal of Materials Chemistry, 2005, 15, 1384.	6.7	92
150	Efficient Assays for Combinatorial Methods for the Discovery of Catalysts. Angewandte Chemie - International Edition, 1999, 38, 323-326.	7.2	91
151	"Brick and Mortar―Strategy for the Formation of Highly Crystalline Mesoporous Titania Films from Nanocrystalline Building Blocks. Chemistry of Materials, 2009, 21, 1260-1265.	3.2	90
152	Formation of Interpenetrating Hierarchical Titania Structures by Confined Synthesis in Inverse Opal. Journal of the American Chemical Society, 2011, 133, 17274-17282.	6.6	90
153	Intrazeolite metal carbonyl topotaxy. A comprehensive structural and spectroscopic study of intrazeolite Group VI metal hexacarbonyls and subcarbonyls. Journal of the American Chemical Society, 1990, 112, 9575-9586.	6.6	89
154	Environmental syntheses of nanosized zeolites with high yield and monomodal particle size distribution. Microporous and Mesoporous Materials, 2006, 96, 405-412.	2.2	89
155	Excited-State Dynamics in Fully Conjugated 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11565-11571.	6.6	89
156	Diffusion of Oriented Single Molecules with Switchable Mobility in Networks of Long Unidimensional Nanochannels. Journal of the American Chemical Society, 2008, 130, 1638-1648.	6.6	87
157	Zeolite Beta nanosized assemblies. Microporous and Mesoporous Materials, 2005, 80, 227-235.	2.2	85
158	Tuning drug uptake and release rates through different morphologies and pore diameters of confined mesoporous silica. Microporous and Mesoporous Materials, 2009, 118, 435-442.	2.2	84
159	Cobalt-Catalyzed Electrophilic Aminations with Anthranils: An Expedient Route to Condensed Quinolines. Journal of the American Chemical Society, 2019, 141, 98-103.	6.6	84
160	Vapor-Sensitive Bragg Mirrors and Optical Isotherms from Mesoporous Nanoparticle Suspensions. ACS Nano, 2009, 3, 1669-1676.	7.3	83
161	Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithiumâ€lon Batteries and Beyond. ChemSusChem, 2019, 12, 4140-4159.	3.6	82
162	Bimodal Mesoporous Carbon Nanofibers with High Porosity: Freestanding and Embedded in Membranes for Lithium–Sulfur Batteries. Chemistry of Materials, 2014, 26, 3879-3886.	3.2	80

#	Article	IF	CITATIONS
163	Pumpless Extracorporeal Lung Assist (Pecla) in Patients With Acute Respiratory Distress Syndrome and Severe Brain Injury. Journal of Trauma, 2005, 58, 1294-1297.	2.3	79
164	Influence of Fermi Level Alignment with Tin Oxide on the Hysteresis of Perovskite Solar Cells. ACS Applied Materials & Sol	4.0	79
165	Perovskite cells charge forward. Nature Materials, 2015, 14, 559-561.	13.3	78
166	New Generation Hole Transporting Materials for Perovskite Solar Cells: Amideâ€Based Smallâ€Molecules with Nonconjugated Backbones. Advanced Energy Materials, 2018, 8, 1801605.	10.2	78
167	High-Throughput Investigation and Characterization of Cobalt Carboxy Phosphonates. Inorganic Chemistry, 2005, 44, 5882-5889.	1.9	76
168	Synthesis and Characterization of the Open-Framework Barium Bisphosphonate [Ba3(O3PCH2NH2CH2PO3)2(H2O)4]·3H2O. Inorganic Chemistry, 2005, 44, 9464-9470.	1.9	76
169	Growth of silicalite films on pre-assembled layers of nanoscale seed crystals on piezoelectric chemical sensors. Advanced Materials, 1997, 9, 585-589.	11.1	74
170	Intrazeolite synthesis of polythiophene chains. Journal of the Chemical Society Chemical Communications, 1989, , 1326.	2.0	73
171	Preparation of Oriented Mesoporous Carbon Nano-Filaments within the Pores of Anodic Alumina Membranes. Journal of the American Chemical Society, 2006, 128, 3920-3921.	6.6	72
172	Rock Salt Ni/Co Oxides with Unusual Nanoscaleâ€Stabilized Composition as Water Splitting Electrocatalysts. Advanced Functional Materials, 2017, 27, 1605121.	7.8	72
173	Gold Electroless Reduction in Nanosized Channels of Thiol-Modified SBA-15 Material. Journal of Physical Chemistry B, 2005, 109, 10737-10743.	1.2	70
174	Controlling the delivery kinetics from colloidal mesoporous silica nanoparticles with pH-sensitive gates. Journal of Materials Chemistry, 2010, 20, 4305.	6.7	70
175	Lengthâ€Dependent Charge Generation from Vertical Arrays of Highâ€Aspectâ€Ratio ZnO Nanowires. Chemistry - A European Journal, 2013, 19, 14665-14674.	1.7	70
176	Catalytic activity of micro/mesoporous composites in toluene alkylation with propylene. Applied Catalysis A: General, 2005, 281, 85-91.	2.2	68
177	Toward Tailored Film Morphologies: The Origin of Crystal Orientation in Hybrid Perovskite Thin Films. Advanced Materials Interfaces, 2016, 3, 1600403.	1.9	67
178	Molecular recognition through intercalation chemistry: immobilization of organoclays on piezoelectric devices. Chemistry of Materials, 1993, 5, 905-907.	3. 2	66
179	Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal–Organic Framework Architectures. Angewandte Chemie - International Edition, 2021, 60, 5519-5526.	7.2	66
180	Kinetics of water adsorption in microporous aluminophosphate layers for regenerative heat exchangers. Applied Thermal Engineering, 2009, 29, 1514-1522.	3.0	65

#	Article	IF	CITATIONS
181	pHâ€Responsive Release of Acetalâ€Linked Melittin from SBAâ€15 Mesoporous Silica. Angewandte Chemie - International Edition, 2011, 50, 6828-6830.	7.2	64
182	Reactivity of a trimethylstannyl molybdenum complex in mesoporous MCM-41. Journal of the Chemical Society Chemical Communications, 1994, , 2619.	2.0	63
183	Covalent Organic Framework Films through Electrophoretic Deposition—Creating Efficient Morphologies for Catalysis. Chemistry of Materials, 2019, 31, 10008-10016.	3.2	63
184	Molecular sieve sensors for selective ethanol detection. Chemistry of Materials, 1992, 4, 975-977.	3. 2	62
185	Combinatorial Methods for the Synthesis of Aluminophosphate Molecular Sieves. Angewandte Chemie - International Edition, 1999, 38, 2891-2894.	7.2	62
186	Two-Dimensional-Hexagonal Periodic Mesoporous Polymer Resin Thin Films by Soft Templating. Chemistry of Materials, 2009, 21, 5754-5762.	3. 2	62
187	2D/3D Hybrid Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells: Improved Energy Level Alignment for Higher Contactâ€Selectivity and Large Open Circuit Voltage. Advanced Energy Materials, 2022, 12, 2103215.	10.2	62
188	Porous Thin Films of Functionalized Mesoporous Silica Nanoparticles. ACS Nano, 2008, 2, 2324-2330.	7.3	61
189	Identifying and controlling phase purity in 2D hybrid perovskite thin films. Journal of Materials Chemistry A, 2018, 6, 22215-22225.	5. 2	59
190	Confinement in Oriented Mesopores Induces Piezoelectric Behavior of Polymeric Nanowires. Chemistry of Materials, 2012, 24, 4215-4221.	3.2	58
191	Single layer growth of sub-micron metal–organic framework crystals observed by in situ atomic force microscopy. Chemical Communications, 2009, , 6294.	2.2	56
192	Solutionâ€Processed Hydrogen Molybdenum Bronzes as Highly Conductive Anode Interlayers in Efficient Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1300896.	10.2	56
193	Shedding Light on the Moisture Stability of 3D/2D Hybrid Perovskite Heterojunction Thin Films. ACS Applied Energy Materials, 2019, 2, 1011-1018.	2.5	56
194	Synthesis and characterization of a new metal organic framework structure with a 2D porous system: (H2NEt2)2[Zn3(BDC)4]â<3DEF. Solid State Sciences, 2006, 8, 363-370.	1.5	55
195	In Situ SAXS Study on a New Mechanism for Mesostructure Formation of Ordered Mesoporous Carbons: Thermally Induced Self-Assembly. Journal of the American Chemical Society, 2012, 134, 11136-11145.	6.6	55
196	Ordered Micro/Mesoporous Composite Prepared as Thin Films. Journal of Physical Chemistry B, 2005, 109, 4485-4491.	1.2	54
197	Simultaneous Measurement of Orientational and Spectral Dynamics of Single Molecules in Nanostructured Hostâ^'Guest Materials. Journal of the American Chemical Society, 2007, 129, 5570-5579.	6.6	53
198	Spray Deposition of Titania Films with Incorporated Crystalline Nanoparticles for Allâ€Solidâ€State Dyeâ€Sensitized Solar Cells Using P3HT. Advanced Functional Materials, 2016, 26, 1498-1506.	7.8	53

#	Article	IF	Citations
199	Why Tinâ€Doping Enhances the Efficiency of Hematite Photoanodes for Water Splittingâ€"The Full Picture. Advanced Functional Materials, 2018, 28, 1804472.	7.8	53
200	A highly crystalline anthracene-based MOF-74 series featuring electrical conductivity and luminescence. Nanoscale, 2019, 11, 20949-20955.	2.8	53
201	Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study. Physical Chemistry Chemical Physics, 2005, 7, 2756.	1.3	52
202	Large antibiotic molecule diffusion in confined mesoporous silica with controlled morphology. Journal of Materials Chemistry, 2008, 18, 5888.	6.7	52
203	Atomicâ€Layerâ€Deposited Aluminum and Zirconium Oxides for Surface Passivation of TiO ₂ in Highâ€Efficiency Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1400214.	10.2	52
204	Encapsulation of lead sulfide molecular clusters into solid matrixes. Structural analysis with x-ray absorption spectroscopy. Inorganic Chemistry, 1989, 28, 2914-2919.	1.9	51
205	A fast analysis method to quantify nanoparticle uptake on a single cell level. Nanomedicine, 2013, 8, 1815-1828.	1.7	51
206	Complete countrywide mortality in COVID patients receiving ECMO in Germany throughout the first three waves of the pandemic. Critical Care, 2021, 25, 413.	2.5	51
207	Closely Packed Zeolite Nanocrystals Obtained via Transformation of Porous Amorphous Silica. Chemistry of Materials, 2004, 16, 5452-5459.	3.2	50
208	Oriented growth of the functionalized metal–organic framework CAU-1 on –OH- and –COOH-terminated self-assembled monolayers. Physical Chemistry Chemical Physics, 2010, 12, 4515.	1.3	50
209	Acupuncture in Critically Ill Patients Improves Delayed Gastric Emptying. Anesthesia and Analgesia, 2011, 112, 150-155.	1.1	50
210	Interaction between zeolites and cluster compounds. Part $1.\hat{a}\in$ "Adsorption of iron pentacarbonyl on zeolites. Journal of the Chemical Society Faraday Transactions I, 1983, 79, 1819.	1.0	49
211	Stabilization of metal ensembles at room temperature: palladium clusters in zeolites. The Journal of Physical Chemistry, 1989, 93, 6116-6120.	2.9	49
212	High throughput experimentation for the synthesis of new crystalline microporous solids. Microporous and Mesoporous Materials, 2001, 48, 355-365.	2.2	49
213	Oxidative removal of template molecules and organic functionalities in mesoporous silica nanoparticles by H2O2 treatment. Microporous and Mesoporous Materials, 2008, 116, 123-130.	2.2	49
214	Electrodeposition of Copper and Silver Nanowires in Hierarchical Mesoporous Silica/Anodic Alumina Nanostructures. Chemistry of Materials, 2010, 22, 5430-5436.	3.2	49
215	Design rules for the preparation of low-cost hole transporting materials for perovskite solar cells with moisture barrier properties. Journal of Materials Chemistry A, 2017, 5, 25200-25210.	5.2	49
216	Temperature-Dependent Ambipolar Charge Carrier Mobility in Large-Crystal Hybrid Halide Perovskite Thin Films. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20838-20844.	4.0	49

#	Article	IF	Citations
217	Solid-state silicon-29 NMR and infrared studies of the reactions of mono- and polyfunctional silanes with zeolite Y surfaces. Journal of the American Chemical Society, 1988, 110, 4546-4553.	6.6	48
218	Preparation of nanosized micro/mesoporous composites. Materials Science and Engineering C, 2003, 23, 1001-1005.	3.8	48
219	Low-Temperature Synthesis of Mesoporous Titaniaâ^'Silica Films with Pre-Formed Anatase Nanocrystals. Chemistry of Materials, 2009, 21, 2410-2417.	3.2	48
220	Heparinâ€Coated Colloidal Mesoporous Silica Nanoparticles Efficiently Bind to Antithrombin as an Anticoagulant Drugâ€Delivery System. Chemistry - A European Journal, 2012, 18, 428-432.	1.7	48
221	A Photoactive Porphyrin-Based Periodic Mesoporous Organosilica Thin Film. Journal of the American Chemical Society, 2013, 135, 18513-18519.	6.6	48
222	Highly conducting Wurster-type twisted covalent organic frameworks. Chemical Science, 2020, 11, 12843-12853.	3.7	48
223	Pores Within Poresâ€"How to Craft Ordered Hierarchical Zeolites. Science, 2011, 333, 297-298.	6.0	47
224	Prospects of lead-free perovskite-inspired materials for photovoltaic applications. Energy and Environmental Science, 2020, 13, 4691-4716.	15.6	47
225	Asymmetric catalysis on solids. Current Opinion in Solid State and Materials Science, 1999, 4, 85-96.	5.6	46
226	AlPO-18 nanocrystals synthesized under microwave irradiation. Journal of Materials Chemistry, 2006, 16, 514-518.	6.7	46
227	Lipid bilayer-coated curcumin-based mesoporous organosilica nanoparticles for cellular delivery. Microporous and Mesoporous Materials, 2016, 225, 371-377.	2.2	46
228	Single-crystal-like optoelectronic-properties of MAPbl ₃ perovskite polycrystalline thin films. Journal of Materials Chemistry A, 2018, 6, 4822-4828.	5.2	46
229	Monomolecular layers and thin films of silane coupling agents by vapor-phase adsorption on oxidized aluminum. The Journal of Physical Chemistry, 1992, 96, 6707-6712.	2.9	45
230	Inorganic–organic hybrid compounds: Synthesis and characterization of three new metal phosphonates with similar characteristic structural features. Journal of Solid State Chemistry, 2006, 179, 145-155.	1.4	45
231	Vertical Columnar Block-Copolymer-Templated Mesoporous Silica via Confined Phase Transformation. Journal of the American Chemical Society, 2008, 130, 17362-17371.	6.6	45
232	Sorption behavior of an oriented surface-grown MOF-film studied by in situ X-ray diffraction. Journal of Materials Chemistry, 2010, 20, 3046.	6.7	45
233	ESR Fine Structure of Manganese Ions in Zeolite A Detects Strong Variations of the Coordination Environment. Journal of the American Chemical Society, 1996, 118, 9615-9622.	6.6	44
234	Transformation of amorphous silica colloids to nanosized MEL zeolite. Microporous and Mesoporous Materials, 2001, 50, 121-128.	2,2	44

#	Article	IF	CITATIONS
235	Inorganic–organic hybrid compounds: hydrothermal synthesis and characterization of a new three-dimensional metal tetraphosphonate Mn[(HO3PCH2)N(H)(CH2)4(H)N(CH2PO3H)2]. Journal of Solid State Chemistry, 2004, 177, 642-647.	1.4	44
236	Oriented Growth of Metal and Semiconductor Nanostructures within Aligned Mesoporous Channels. Chemistry of Materials, 2007, 19, 1376-1381.	3.2	44
237	Photochemistry of 2-(2â€~-Hydroxyphenyl)benzothiazole Encapsulated in Nanosized Zeolites. Journal of Physical Chemistry A, 2004, 108, 10640-10648.	1.1	43
238	Characterization of Interfacial Modifiers for Hybrid Solar Cells. Journal of Physical Chemistry C, 2011, 115, 15081-15088.	1.5	42
239	Facile synthesis of a mesoporous benzothiadiazole-COF based on a transesterification process. CrystEngComm, 2013, 15, 1500.	1.3	42
240	Electron Collection in Host–Guest Nanostructured Hematite Photoanodes for Water Splitting: The Influence of Scaffold Doping Density. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4623-4630.	4.0	42
241	Intrazeolite chemistry of nickel(0) complexes and Ni(0,II) clusters studied by EXAFS, solid-state NMR and FT-IR spectroscopy. Journal of the American Chemical Society, 1988, 110, 1801-1810.	6.6	41
242	Polypyrrolketten in ZeolithkanÃken. Angewandte Chemie, 1989, 101, 1737-1738.	1.6	41
243	Confined Detection of High-Energy-Density Materials. Journal of Physical Chemistry C, 2007, 111, 6694-6699.	1.5	41
244	Crystallization and porosity of ZSM-23. Microporous and Mesoporous Materials, 2011, 143, 253-262.	2.2	41
245	Cascaded Photoinduced Drug Delivery to Cells from Multifunctional Core–Shell Mesoporous Silica. Advanced Healthcare Materials, 2012, 1, 316-320.	3.9	41
246	Highly active enzymes immobilized in large pore colloidal mesoporous silica nanoparticles. New Journal of Chemistry, 2019, 43, 1671-1680.	1.4	41
247	Turn-on fluorescence triggered by selective internal dye replacement in MOFs. Chemical Communications, 2014, 50, 3599.	2.2	40
248	Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films. ACS Applied Materials & Diffusion in Large Crystal MAPI Thin Films.	4.0	40
249	Highly Oriented Mesoporous Silica Channels Synthesized in Microgrooves and Visualized with Single-Molecule Diffusion. ACS Nano, 2012, 6, 1948-1960.	7.3	39
250	In Situ Incorporation of 2-(2-Hydroxyphenyl)benzothiazole within FAU Colloidal Crystals. Angewandte Chemie - International Edition, 2003, 42, 1611-1614.	7.2	38
251	A new calcium tetraphosphonate containing small pores, Ca[(HO3PCH2)2N(H)–CH2C6H4CH2–N(H)(CH2PO3H)2]·2H2O. Microporous and Mesoporous Materials, 2004, 69, 65-69.	2.2	38
252	Nanosized Gismondine Grown in Colloidal Precursor Solutions. Langmuir, 2004, 20, 5271-5276.	1.6	38

#	Article	IF	Citations
253	Interventional Lung Assist: A New Concept of Protective Ventilation in Bridge to Lung Transplantation. ASAIO Journal, 2008, 54, 3-10.	0.9	38
254	Intracellular chromobody delivery by mesoporous silica nanoparticles for antigen targeting and visualization in real time. Scientific Reports, 2016, 6, 25019.	1.6	37
255	Nanoscale Synthesis of Two Porphyrin-Based MOFs with Gallium and Indium. Inorganic Chemistry, 2016, 55, 5312-5319.	1.9	37
256	Increasing Photostability of Inverted Nonfullerene Organic Solar Cells by Using Fullerene Derivative Additives. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19072-19084.	4.0	37
257	1,4-Phenylenebis(methylidyne)tetrakis(phosphonic acid): A New Building Block in Metal Organic Framework Synthesis. Inorganic Chemistry, 2009, 48, 4331-4341.	1.9	36
258	Addition of Acetylsalicylic Acid to Heparin for Anticoagulation Management During Pumpless Extracorporeal Lung Assist. ASAIO Journal, 2011, 57, 164-168.	0.9	36
259	Applicability of avidin protein coated mesoporous silica nanoparticles as drug carriers in the lung. Nanoscale, 2016, 8, 8058-8069.	2.8	36
260	Solvatochromism of a Copper(II) (Tetramethylethylenediamine)-(acetylacetonate)+ Complex Encapsulated in EMT Zeolite Cages. Advanced Materials, 2001, 13, 208-211.	11.1	35
261	In situ study of spray deposited titania photoanodes for scalable fabrication of solid-state dye-sensitized solar cells. Nano Energy, 2017, 40, 317-326.	8.2	35
262	The Bottlenecks of Cs ₂ AgBiBr ₆ Solar Cells: How Contacts and Slow Transients Limit the Performance. Advanced Optical Materials, 2021, 9, 2100202.	3.6	35
263	Designing zeolite catalysts for shape-selective reactions: Chemical modification of surfaces for improved selectivity to dimethylamine in synthesis from methanol and ammonia. Journal of Catalysis, 1990, 124, 268-280.	3.1	34
264	Quantification of the Reactivity of 3-Aminopropyl-triethoxysilane Monolayers with the Quartz-Crystal Microbalance. Angewandte Chemie International Edition in English, 1992, 31, 336-338.	4.4	34
265	Clickable Multifunctional Large-Pore Mesoporous Silica Nanoparticles as Nanocarriers. Chemistry of Materials, 2018, 30, 644-654.	3.2	34
266	Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds**. Angewandte Chemie - International Edition, 2021, 60, 17455-17463.	7.2	34
267	Zeolitic Host–Guest Interactions and Building Blocks for the Self-Assembly of Complex Materials. MRS Bulletin, 2005, 30, 713-720.	1.7	33
268	Colloidal Zeolites as Host Matrix for Copper Nanoclusters. Chemistry of Materials, 2006, 18, 3373-3380.	3.2	33
269	Nanofusion: Mesoporous Zeolites Made Easy. Chemistry - A European Journal, 2012, 18, 7671-7674.	1.7	33
270	Charge Transport in \${hbox{TiO}}_{2}\$ Films With Complex Percolation Pathways Investigated by Time-Resolved Terahertz Spectroscopy. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 302-313.	2.0	33

#	Article	IF	Citations
271	Scaffold-Induced Diketopyrrolopyrrole Molecular Stacks in a Covalent Organic Framework. Chemistry of Materials, 2019, 31, 2707-2712.	3.2	33
272	Covalent Organic Framework Nanoplates Enable Solution-Processed Crystalline Nanofilms for Photoelectrochemical Hydrogen Evolution. Journal of the American Chemical Society, 2022, 144, 10291-10300.	6.6	33
273	Oriented Growth of Single-Crystalline Bi2S3 Nanowire Arrays. ChemPhysChem, 2007, 8, 235-240.	1.0	32
274	Formation Mechanism of Mesostructured Silica in Confined Space: An In Situ GISAXS Study. ChemPhysChem, 2008, 9, 2059-2067.	1.0	32
275	"Liquid-Phase Calcination―of Colloidal Mesoporous Silica Nanoparticles in High-Boiling Solvents. Journal of the American Chemical Society, 2011, 133, 6484-6486.	6.6	32
276	Light-emitting electrochemical cells based on inorganic metal halide perovskite nanocrystals. Journal Physics D: Applied Physics, 2018, 51, 334001.	1.3	32
277	Ultraâ€Thin Protective Coatings for Sustained Photoelectrochemical Water Oxidation with Mo:BiVO ₄ . Advanced Functional Materials, 2021, 31, 2011210.	7.8	32
278	Inorganic–organic hybrid materials: synthesis and crystal structure determination from powder diffraction data of Pb2(O3PCH2C6H4CH2PO3). Journal of Solid State Chemistry, 2003, 173, 293-298.	1.4	31
279	Cell Type Determines the Light-Induced Endosomal Escape Kinetics of Multifunctional Mesoporous Silica Nanoparticles. Nano Letters, 2013, 13, 1047-1052.	4.5	31
280	Quantum-Dot-Sensitized Solar Cells with Water-Soluble and Air-Stable PbS Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 5142-5149.	1.5	31
281	Making Ultrafast Highâ€Capacity Anodes for Lithiumâ€lon Batteries via Antimony Doping of Nanosized Tin Oxide/Graphene Composites. Advanced Functional Materials, 2018, 28, 1706529.	7.8	31
282	Interaction between zeolites and cluster compounds. Part 2.â€"Thermal decomposition of iron pentacarbonyl on zeolites. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 1391.	1.0	30
283	Silicalite-1/polymer films with low-k dielectric constants. Applied Surface Science, 2004, 226, 155-160.	3.1	30
284	Discrete tomography of demanding samples based on a modified SIRT algorithm. Ultramicroscopy, 2012, 115, 41-49.	0.8	30
285	Ultrasmall Co ₃ O ₄ Nanocrystals Strongly Enhance Solar Water Splitting on Mesoporous Hematite. Advanced Materials Interfaces, 2015, 2, 1500358.	1.9	30
286	Pore wall fluorescence labeling of covalent organic frameworks. CrystEngComm, 2017, 19, 4886-4891.	1.3	30
287	Charge Transport Limitations in Perovskite Solar Cells: The Effect of Charge Extraction Layers. ACS Applied Materials & Description (1988) Applied (1988) Applied Materials & Description (1988) Applied Materials &	4.0	30
288	Optical Effects in Reflection-Absorption IR Spectroscopy of Thin Films of Silane Coupling Agents on Metallic Surfaces. Langmuir, 1995, 11, 578-584.	1.6	29

#	Article	IF	CITATIONS
289	Conjugated and conducting nanostructures in zeolites. Studies in Surface Science and Catalysis, 1996, 102, 295-322.	1.5	29
290	In Situ GISAXS Study of the Formation of Mesostructured Phases within the Pores of Anodic Alumina Membranes. Langmuir, 2008, 24, 5018-5023.	1.6	29
291	Tuning Singleâ€Molecule Dynamics in Functionalized Mesoporous Silica. Chemistry - A European Journal, 2009, 15, 1661-1672.	1.7	29
292	Implementing chemical functionality into oriented films of metal–organic frameworks on self-assembled monolayers. Journal of Materials Chemistry, 2011, 21, 14849.	6.7	29
293	Assembly of mesoporous indium tin oxide electrodes from nano-hydroxide building blocks. Chemical Science, 2012, 3, 2367.	3.7	29
294	Comparison of Solid-State Quantum-Dot-Sensitized Solar Cells with <i>ex Situ</i> and <i>in Situ</i> Grown PbS Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 25853-25862.	1.5	29
295	Intrazeolite phototopotaxy: EXAFS analysis of precursor 8{W(CO)6}-Na56Y and photooxidation products 16(WO3)-Na56Y and 28(WO3)-Na56Y. The Journal of Physical Chemistry, 1991, 95, 5276-5281.	2.9	28
296	Methyltrioxorhenium Encapsulated in Zeolite Y:Â Tunable Olefin Metathesis Catalyst. Chemistry of Materials, 1997, 9, 2252-2254.	3.2	28
297	Control of Perovskite Crystal Growth by Methylammonium Lead Chloride Templating. Chemistry - an Asian Journal, 2016, 11, 1199-1204.	1.7	28
298	A Selective Mucin/Methylcellulose Hybrid Gel with Tailored Mechanical Properties. Macromolecular Bioscience, 2016, 16, 567-579.	2.1	28
299	Outcome of acute respiratory distress syndrome in university and non-university hospitals in Germany. Critical Care, 2017, 21, 122.	2.5	28
300	Röhrenförmige Selbstorganisation kovalenter organischer Netzwerke. Angewandte Chemie, 2018, 130, 856-860.	1.6	28
301	Highly conductive titania supported iridium oxide nanoparticles with low overall iridium density as OER catalyst for large-scale PEM electrolysis. Applied Materials Today, 2021, 24, 101134.	2.3	28
302	Chemistry of cyclopentadienyliron dicarbonyl dimer and ferrocene in zeolite Y cavities: anchoring organometallic fragments into microporous solids. The Journal of Physical Chemistry, 1989, 93, 4562-4571.	2.9	27
303	Covalent Attachment of Nickel Clusters to Gold Electrode Surfaces. Formation of Rectifying Molecular Layers. Langmuir, 1996, 12, 3075-3081.	1.6	27
304	Adsorption of Zirconiumâ^'Phosphonate Multilayers onto Phosphate-Derivatized Glassy Carbon Substrates. Chemistry of Materials, 1996, 8, 1865-1870.	3.2	27
305	Intrazeolite Complexation of Transition Metal Ions by Triazacyclononane-Type Ligands:Â Control of Cluster Nuclearity and Oxygen Binding in Confined Reaction Spaces. Journal of the American Chemical Society, 1997, 119, 9460-9465.	6.6	27
306	Tuning the Thermal Relaxation of a Photochromic Dye in Functionalized Mesoporous Silica. Advanced Functional Materials, 2009, 19, 2027-2037.	7.8	27

#	Article	IF	Citations
307	Controlled Growth of TiO2Nanotubes on Conducting Glass. Chemistry of Materials, 2011, 23, 155-162.	3.2	27
308	Highly oriented surface-growth and covalent dye labeling of mesoporous metal–organic frameworks. Dalton Transactions, 2012, 41, 3899.	1.6	27
309	From benzodithiophene to diethoxy-benzodithiophene covalent organic frameworks – structural investigations. CrystEngComm, 2016, 18, 4295-4302.	1.3	27
310	A Chemiluminescent Metal–Organic Framework. Chemistry - A European Journal, 2019, 25, 6349-6354.	1.7	27
311	Optoelectronic Properties of Cs ₂ AgBiBr ₆ Thin Films: The Influence of Precursor Stoichiometry. ACS Applied Energy Materials, 2020, 3, 11597-11609.	2.5	27
312	Particle-Size-Dependent Delivery of Antitumoral miRNA Using Targeted Mesoporous Silica Nanoparticles. Pharmaceutics, 2020, 12, 505.	2.0	27
313	Optimization of Reaction Conditions for the Metalorganic Modification of MCM-41. Chemistry of Materials, 2007, 19, 3568-3574.	3.2	26
314	Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films. ACS Photonics, 2016, 3, 255-261.	3.2	26
315	Dibenzochrysene enables tightly controlled docking and stabilizes photoexcited states in dual-pore covalent organic frameworks. Nanoscale, 2019, 11, 23338-23345.	2.8	26
316	Inorganic–organic hybrid compounds: synthesis and crystal structure determination from powder diffraction data of Sn2[O3PCH2C6H4CH2PO3]. Solid State Sciences, 2003, 5, 629-634.	1.5	25
317	Synthesis of colloidal AlPO4-18 crystals and their use for supported film growth. Journal of Materials Chemistry, 2003, 13, 1526.	6.7	25
318	Multilayered High Surface Area "Brick and Mortar―Mesoporous Titania Films as Efficient Anodes in Dye-Sensitized Solar Cells. Chemistry of Materials, 2012, 24, 659-663.	3.2	25
319	Highly soluble energy relay dyes for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 11306.	1.3	25
320	A Zinc Phthalocyanine Based Periodic Mesoporous Organosilica Exhibiting Charge Transfer to Fullerenes. Chemistry - A European Journal, 2014, 20, 14971-14975.	1.7	25
321	Electroactive Metalorganic Frameworks. Israel Journal of Chemistry, 2018, 58, 1089-1101.	1.0	25
322	Biocompatible crosslinked \hat{i}^2 -cyclodextrin nanoparticles as multifunctional carriers for cellular delivery. Nanoscale, 2018, 10, 16284-16292.	2.8	25
323	Synthesis and Characterization of the Tetraphosphonic Acid Ester (Et2O3PCH2)4C6H2 and the Open-Framework Cadmium Tetraphosphonate, Cd2[(HO3PCH2)4C6H2]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 575-581.	0.6	24
324	Nanosized Zeolites Templated by Metalâ-'Amine Complexes. Chemistry of Materials, 2007, 19, 1203-1205.	3.2	24

#	Article	IF	CITATIONS
325	High-Silica Zeolite- \hat{l}^2 : From Stable Colloidal Suspensions to Thin Films. Journal of Physical Chemistry C, 2008, 112, 14274-14280.	1.5	24
326	An Electrically Conducting Threeâ€Dimensional Iron–Catecholate Porous Framework. Angewandte Chemie - International Edition, 2021, 60, 18065-18072.	7.2	24
327	Design of High-Performance Lead-Free Quaternary Antiperovskites for Photovoltaics via Ion Type Inversion and Anion Ordering. Journal of the American Chemical Society, 2021, 143, 12369-12379.	6.6	24
328	Intrazeolite assembly and pyrolysis of polyacrylonitrile. Journal of the Chemical Society Chemical Communications, 1992, , 633.	2.0	23
329	Direct Visualization of Dye and Oligonucleotide Diffusion in Silica Filaments with Collinear Mesopores. Nano Letters, 2012, 12, 1354-1361.	4.5	23
330	Nanocellulose-Templated Porous Titania Scaffolds Incorporating Presynthesized Titania Nanocrystals. Chemistry of Materials, 2015, 27, 6205-6212.	3.2	23
331	Genetically designed biomolecular capping system for mesoporous silica nanoparticles enables receptor-mediated cell uptake and controlled drug release. Nanoscale, 2016, 8, 8101-8110.	2.8	23
332	Dual absorber Fe ₂ O ₃ /WO ₃ host-guest architectures for improved charge generation and transfer in photoelectrochemical applications. Materials Research Express, 2017, 4, 016409.	0.8	23
333	In Situ Study of Degradation in P3HT–Titania-Based Solid-State Dye-Sensitized Solar Cells. ACS Energy Letters, 2017, 2, 991-997.	8.8	23
334	Climate change, global warming, and intensive care. Intensive Care Medicine, 2020, 46, 485-487.	3.9	23
335	Zeolite encapsulated vanadium oxo species for the catalytic reduction of NO by NH3. Catalysis Today, 1997, 33, 263-278.	2.2	22
336	Stable Mesostructured Silicate Films Containing Nanosized Zeolite. Chemistry of Materials, 2003, 15, 2240-2246.	3.2	22
337	Multiple Nanowire Species Synthesized on a Single Chip by Selectively Addressable Horizontal Nanochannels. Nano Letters, 2010, 10, 1341-1346.	4.5	22
338	Hierarchically structured biphenylene-bridged periodic mesoporous organosilica. Journal of Materials Chemistry, 2011, 21, 17338.	6.7	22
339	Immobilizing glycopyranose on mesoporous silica via "click-chemistry―for borate adsorption. Microporous and Mesoporous Materials, 2012, 147, 5-9.	2.2	22
340	Passivation of PbS Quantum Dot Surface with <scp>l</scp> -Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 4600-4607.	4.0	22
341	Universal Nanoparticle Wetting Agent for Upscaling Perovskite Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials	4.0	22
342	Polythiophenes and oligothiophenes in zeolite hosts: Conjugated nanometer size filaments. Synthetic Metals, 1993, 55, 1238-1245.	2.1	21

#	Article	IF	Citations
343	Nanoscale crystal orientation in silicalite-1 films studied by grazing incidence X-ray diffraction. Microporous and Mesoporous Materials, 2001, 43, 191-200.	2.2	21
344	Crystallization of nanosized MEL-type zeolite from colloidal precursors. Materials Science and Engineering C, 2002, 19, 111-114.	3.8	21
345	Synthesis and characterization of V- and Ti-substituted mesoporous materials. Materials Science and Engineering C, 2003, 23, 817-821.	3.8	21
346	Periodic Mesoporous Organosilica in Confined Environments. Chemistry - A European Journal, 2009, 15, 6645-6650.	1.7	21
347	Functionalized cubic mesostructured silica films. Materials Science and Engineering C, 2003, 23, 827-831.	3.8	20
348	Nondestructive Identification of Colloidal Molecular Sieves Stabilized in Water. Journal of Physical Chemistry B, 2005, 109, 17060-17065.	1.2	20
349	Cubic and Hexagonal Mesoporous Carbon in the Pores of Anodic Alumina Membranes. Chemistry - A European Journal, 2011, 17, 9463-9470.	1.7	20
350	Functionalization of Quinoxalines by Using TMP Bases: Preparation of Tetracyclic Heterocycles with High Photoluminescene Quantum Yields. Chemistry - A European Journal, 2015, 21, 1102-1107.	1.7	20
351	Focus on long-term cognitive, psychological and physical impairments after critical illness. Intensive Care Medicine, 2019, 45, 1466-1468.	3.9	20
352	AlPO4-18 synthesized from colloidal precursors and its use for the preparation of thin films. Applied Surface Science, 2004, 226, 1-6.	3.1	19
353	High-Density Energetic Material Hosted in Pure Silica MFI-Type Zeolite Nanocrystals. Advanced Materials, 2006, 18, 2440-2443.	11.1	19
354	Assembly of Nanozeolite Monolayers on the Gold Substrates of Piezoelectric Sensors. Langmuir, 2008, 24, 11196-11202.	1.6	19
355	Tuning the crystallinity parameters in macroporous titania films. Journal of Materials Chemistry A, 2014, 2, 6504.	5.2	19
356	A Highlyâ€Ordered 3D Covalent Fullerene Framework. Angewandte Chemie - International Edition, 2015, 54, 7577-7581.	7.2	19
357	Synthesis of Hybrid Tin Halide Perovskite Solar Cells with Less Hazardous Solvents: Methanol and 1,4â€Dioxane. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1704-1711.	0.6	19
358	Quality of inter-hospital transportation in 431 transport survivor patients suffering from acute respiratory distress syndrome referred to specialist centers. Annals of Intensive Care, 2018, 8, 5.	2.2	19
359	Hydrazone-based hole transporting material prepared <i>via</i> condensation chemistry as alternative for cross-coupling chemistry for perovskite solar cells. Molecular Systems Design and Engineering, 2018, 3, 734-740.	1.7	19
360	Cellulose Nanocrystal-Templated Tin Dioxide Thin Films for Gas Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12639-12647.	4.0	19

#	Article	IF	Citations
361	Influence of quality of care and individual patient characteristics on quality of life and return to work in survivors of the acute respiratory distress syndrome: protocol for a prospective, observational, multi-centre patient cohort study (DACAPO). BMC Health Services Research, 2015, 15, 563.	0.9	18
362	Electronâ€Blocking and Oxygen Evolution Catalyst Layers by Plasmaâ€Enhanced Atomic Layer Deposition of Nickel Oxide. Advanced Materials Interfaces, 2018, 5, 1701531.	1.9	18
363	Influence of quality of intensive care on quality of life/return to work in survivors of the acute respiratory distress syndrome: prospective observational patient cohort study (DACAPO). BMC Public Health, 2020, 20, 861.	1.2	18
364	How photocorrosion can trick you: a detailed study on low-bandgap Li doped CuO photocathodes for solar hydrogen production. Nanoscale, 2020, 12, 7766-7775.	2.8	18
365	Curcumin Encapsulated in Crosslinked Cyclodextrin Nanoparticles Enables Immediate Inhibition of Cell Growth and Efficient Killing of Cancer Cells. Nanomaterials, 2021, 11, 489.	1.9	18
366	ECMO use in Germany: An analysis of 29,929 ECMO runs. PLoS ONE, 2021, 16, e0260324.	1.1	18
367	Zeolite Inclusion Chemistry. ACS Symposium Series, 1992, , 274-293.	0.5	17
368	Zeolite beta films synthesized from basic and near-neutral precursor solutions and gels. Materials Science and Engineering C, 2005, 25, 570-576.	3.8	17
369	Nanocellulose-Assisted Formation of Porous Hematite Nanostructures. Inorganic Chemistry, 2015, 54, 1129-1135.	1.9	17
370	Functionalized PCN-6 metal-organic frameworks. Microporous and Mesoporous Materials, 2015, 216, 51-55.	2.2	17
371	Adsorption and Reactive Desorption on Metal–Organic Frameworks: A Direct Strategy for Lactic Acid Recovery. ChemSusChem, 2017, 10, 643-650.	3.6	17
372	Preparation of Polyfunctional Naphthyridines by Cobalt-Catalyzed Cross-Couplings of Halogenated Naphthyridines with Magnesium and Zinc Organometallics. Organic Letters, 2017, 19, 6384-6387.	2.4	17
373	Silverâ€Bismuth Based 2D Double Perovskites (4FPEA) ₄ AgBiX ₈ (<i>X</i> Â= Cl, Br,) Tj E	TQq1 3.6	1 0.784314 rgB 17
374	Reduction and cluster growth of palladium in zeolite Y containing transition metal ions. X-ray absorption studies. The Journal of Physical Chemistry, 1990, 94, 845-853.	2.9	16
375	Reactivity of (trimethyl stannyl)pentacarbonylmanganese in zeolite cavities. The Journal of Physical Chemistry, 1992, 96, 9447-9456.	2.9	16
376	Metalorganic modification of periodic mesoporous silica: aromatic nitrogen functionalities. Journal of Materials Chemistry, 2006, 16, 3629.	6.7	16
377	Functionalization of Colloidal Mesoporous Silica by Metalorganic Reagents. Langmuir, 2008, 24, 14209-14214.	1.6	16
378	No change in the regional distribution of tidal volume during lateral posture in mechanically ventilated patients assessed by electrical impedance tomography. Clinical Physiology and Functional Imaging, 2010, 30, 234-240.	0.5	16

#	Article	IF	Citations
379	Growing honeycombs on graphene. Nature Nanotechnology, 2011, 6, 333-335.	15.6	16
380	Dendronized mesoporous silica nanoparticles provide an internal endosomal escape mechanism for successful cytosolic drug release. Microporous and Mesoporous Materials, 2016, 227, 242-251.	2.2	16
381	Perovskite solar cells with a hybrid electrode structure. AIP Advances, 2019, 9, 125037.	0.6	16
382	MOF-74(M) Films Obtained through Vapor-Assisted Conversionâ€"Impact on Crystal Orientation and Optical Properties. Chemistry of Materials, 2021, 33, 5896-5904.	3.2	16
383	Stabilization of Conducting Heteroaromatic Polymers in Large-Pore Zeolite Channels. Advances in Chemistry Series, 1989, , 433-449.	0.6	15
384	Surface Attachment and Stability of Cross-Linked Poly(ethylenimine)-Epoxy Networks on Gold. Chemistry of Materials, 1994, 6, 2143-2150.	3.2	15
385	Host–Guest Interactions in Zeolites and Periodic Mesoporous Materials. Studies in Surface Science and Catalysis, 2007, , 611-XIX.	1.5	15
386	Formation of hexagonal and cubic fluorescent periodic mesoporous organosilicas in the channels of anodic alumina membranes. Journal of Materials Chemistry C, 2014, 2, 50-55.	2.7	15
387	Functionalizations of Mixtures of Regioisomeric Aryllithium Compounds by Selective Trapping with Dichlorozirconocene. Angewandte Chemie - International Edition, 2016, 55, 401-404.	7.2	15
388	Photolytic and thermolytic decomposition products from iron pentacarbonyl adsorbed on Y zeolite. Zeolites, 1985, 5, 240-244.	0.9	14
389	Exceptionally Small Colloidal Zeolites Templated by Pd and Pt Amines. Langmuir, 2008, 24, 4310-4315.	1.6	14
390	The influence of the guest ion on the synthesis and sorption properties of an open framework lanthanide tetrakisphosphonate. CrystEngComm, 2010, 12, 1920.	1.3	14
391	Selective Functionalization of Tetrathiafulvalene Using Mg- and Zn-TMP-Bases: Preparation of Mono-, Di-, Tri-, and Tetrasubstituted Derivatives. Organic Letters, 2015, 17, 5356-5359.	2.4	14
392	V(III)-Doped Nickel Oxide-Based Nanocatalysts for Electrochemical Water Splitting: Influence of Phase, Composition, and Doping on the Electrocatalytic Activity. Chemistry of Materials, 2020, 32, 10394-10406.	3.2	14
393	Molecular recognition on acoustic wave devices: Zeolite thin films coated with organosilane gate layers. Microporous Materials, 1993, 1, 413-422.	1.6	13
394	Femtochemistry of Guest Molecules Hosted in Colloidal Zeolites. Advanced Functional Materials, 2005, 15, 1973-1978.	7.8	13
395	Metalâ^'Organic Modification of Periodic Mesoporous Silica:  Multiply Bonded Systems. Chemistry of Materials, 2007, 19, 5797-5802.	3.2	13
396	Diverse copper clusters confined in microporous nanocrystals. Sensors and Actuators B: Chemical, 2007, 126, 338-343.	4.0	13

#	Article	IF	CITATIONS
397	Molecular sieve catalysts on microcalorimeter chips for selective chemical sensing. Microporous and Mesoporous Materials, 2009, 119, 356-359.	2.2	13
398	Tuning the Conduction Mechanism in Niobium-Doped Titania Nanoparticle Networks. Journal of Physical Chemistry C, 2011, 115, 6968-6974.	1.5	13
399	Controlling The Mobility Of Oligonucleotides In The Nanochannels Of Mesoporous Silica. Advanced Functional Materials, 2012, 22, 106-112.	7.8	13
400	Formation of stable 2D methylammonium antimony iodide phase for lead-free perovskite-like solar cells [*] . JPhys Energy, 2020, 2, 024007.	2.3	13
401	What's new in intensive care: environmental sustainability. Intensive Care Medicine, 2021, 47, 903-905.	3.9	13
402	1,10-Phenanthroline as an Efficient Bifunctional Passivating Agent for MAPbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 32894-32905.	4.0	13
403	Electron paramagnetic resonance and microwave conductivity in pyrolyzed polyacrylonitrile chains included in zeolites. Physical Review B, 1997, 56, 12899-12904.	1.1	12
404	Probing the Intrapore Surface of Phenyl-Substituted Nanoscale Mesoporous SilicaPiezoelectric Sorption Measurements in Thin Films. Langmuir, 2007, 23, 12915-12922.	1.6	12
405	Extracorporeal life support, ethics, and questions at the bedside: how does the end of the pathway look?. Intensive Care Medicine, 2015, 41, 1714-1715.	3.9	12
406	A biomolecule-assisted, cost-efficient route for growing tunable CuInS ₂ films for green energy application. RSC Advances, 2017, 7, 20219-20230.	1.7	12
407	Carbon-templated conductive oxide supports for oxygen evolution catalysis. Nanoscale, 2019, 11, 14285-14293.	2.8	12
408	Propagation of Holes and Electrons in Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2019, 59, 5057-5064.	2.5	12
409	A Novel Electrically Conductive Perylene Diimideâ€Based MOFâ€₹4 Series Featuring Luminescence and Redox Activity. Small Structures, 2022, 3, .	6.9	12
410	Organometallic fragments in microporous solids: intrazeolite chemistry of (cyclooctatetraene)iron tricarbonyl. The Journal of Physical Chemistry, 1989, 93, 4205-4213.	2.9	11
411	Fe-containing mesoporous film hosts for carbon nanotubes. Materials Science and Engineering C, 2003, 23, 145-149.	3.8	11
412	Nanostructured Ternary FeCrAl Oxide Photocathodes for Water Photoelectrolysis. Journal of the American Chemical Society, 2016, 138, 1860-1867.	6.6	11
413	Synergistic Combination of Calcium and Citrate in Mesoporous Nanoparticles Targets Pleural Tumors. CheM, 2021, 7, 480-494.	5.8	11
414	ECMO during the COVID-19 pandemic: moving from rescue therapy to more reasonable indications. European Respiratory Journal, 2022, 59, 2103262.	3.1	11

#	Article	IF	Citations
415	Encapsulation of Tetracarbonyl(trimethylstannyl)cobalt in NaY Zeolite: Reactivity and Alloy Cluster Formation. The Journal of Physical Chemistry, 1994, 98, 12067-12074.	2.9	10
416	Mesoporous ordered silica structures modified by metal organic reagents and their application in catalytic Michael additions. Microporous and Mesoporous Materials, 2008, 115, 629-633.	2.2	10
417	Review. Fluorescence Microscopy Studies of Porous Silica Materials. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 423-444.	0.3	10
418	Thick titania films with hierarchical porosity assembled from ultrasmall titania nanoparticles as photoanodes for dye-sensitized solar cells. New Journal of Chemistry, 2014, 38, 1996-2001.	1.4	10
419	Synthesis and Reactivity of Triazaphenanthrenes. Organic Letters, 2016, 18, 3158-3161.	2.4	10
420	Nanosized Lithium-Rich Cobalt Oxide Particles and Their Transformation to Lithium Cobalt Oxide Cathodes with Optimized High-Rate Morphology. Chemistry of Materials, 2019, 31, 8685-8694.	3.2	10
421	Sn-Doped Hematite for Photoelectrochemical Water Splitting: The Effect of Sn Concentration. Zeitschrift Fur Physikalische Chemie, 2020, 234, 683-698.	1.4	10
422	Molecular recognition in zeolite thin film sensors. Growth of oriented zeolite films. Studies in Surface Science and Catalysis, 1995, , 281-282.	1.5	9
423	Unexpected Photoreactivity in a NO ₂ -Functionalized Aluminum-MOF. Journal of Physical Chemistry C, 2015, 119, 26401-26408.	1.5	9
424	Overcoming the Challenges of Freestanding Tin Oxideâ€Based Composite Anodes to Achieve High Capacity and Increased Cycling Stability. Advanced Functional Materials, 2021, 31, 2106373.	7.8	9
425	Kinetics of ammonia penetrating into the sodalite units of sodium faujasites studied by nuclear magnetic resonance. The Journal of Physical Chemistry, 1979, 83, 1233-1234.	2.9	8
426	Substrate effect on the growth of iron clusters in Y zeolite. Surface Science, 1985, 156, 57-63.	0.8	8
427	The low-field conductivity of zeolite-encapsulated molecular wires. Synthetic Metals, 1993, 57, 5063-5068.	2.1	8
428	Nanosized EDI-type molecular sieve. Microporous and Mesoporous Materials, 2008, 116, 258-266.	2.2	8
429	Synthesis and characterization of CulnS2 thin film structures. Journal of Materials Science, 2012, 47, 1669-1676.	1.7	8
430	Insights into Nanoscale Electrophoresis of Single Dye Molecules in Highly Oriented Mesoporous Silica Channels. Journal of Physical Chemistry C, 2014, 118, 24013-24024.	1.5	8
431	Controlling crystal growth by chloride-assisted synthesis: Towards optimized charge transport in hybrid halide perovskites. Solar Energy Materials and Solar Cells, 2017, 166, 269-275.	3.0	8
432	Flexible freestanding MoS ₂ -based composite paper for energy conversion and storage. Beilstein Journal of Nanotechnology, 2019, 10, 1488-1496.	1.5	8

#	Article	IF	Citations
433	Stressors and strains of next of kin of patients with ARDS in intensive care: A qualitative interview study using a stress–strain approach. Intensive and Critical Care Nursing, 2020, 57, 102783.	1.4	8
434	Energy Efficient Ultrahigh Flux Separation of Oily Pollutants from Water with Superhydrophilic Nanoscale Metal–Organic Framework Architectures. Angewandte Chemie, 2021, 133, 5579-5586.	1.6	8
435	Organ donation after controlled cardiocirculatory death: confidence by clarity. Intensive Care Medicine, 2021, 47, 325-327.	3.9	8
436	Zeolite Supported Iron Oxide as Catalyst or Catalyst Precursor for Hydrocarbon Conversion Reactions. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1986, 90, 395-398.	0.9	7
437	Inclusion Polymerization and Doping in Zeolite Channels: Polyaniline. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 181, 315-324.	0.3	7
438	Transition metal germylene complexes in zeolite cages: anchoring and stability. The Journal of Physical Chemistry, 1992, 96, 6713-6724.	2.9	7
439	High-throughput investigation of inorganic–organic hybrid compounds: Systematic study of the system CdCl2/(H2O3PCH2)2N–CH2C6H4–COOH/NaOH. Solid State Sciences, 2008, 10, 837-846.	1.5	7
440	In situ functionalization of mesoporous silica within the pores of anodic alumina membranes. Journal of Materials Chemistry, 2009, 19, 9195.	6.7	7
441	Stimuli-responsive Bragg stacks for chemo-optical sensing applications. , 2010, , .		7
442	Synthesis and Functionalization of Ordered Largeâ€Pore Mesoporous Silica Nanoparticles for Biomedical Applications. Chemie-Ingenieur-Technik, 2017, 89, 876-886.	0.4	7
443	Organâ€Restricted Vascular Delivery of Nanoparticles for Lung Cancer Therapy. Advanced Therapeutics, 2020, 3, 2000017.	1.6	7
444	Isoretikul̮ Kristallisation von hochpor̦sen kubischen kovalentorganischen K̮gverbindungen**. Angewandte Chemie, 2021, 133, 17595-17604.	1.6	7
445	Selective functionalization of the 1 <i>H</i> i>imidazo[1,2- <i>b</i>]pyrazole scaffold. A new potential non-classical isostere of indole and a precursor of push–pull dyes. Chemical Science, 2021, 12, 12993-13000.	3.7	7
446	Spins et porteurs de charge de polymÃ"res conducteurs inclus dans les cavités d'une zéolithe. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1992, 89, 1137-1142.	0.2	7
447	Micro/Mesoporous Composites Based on Colloidal Zeolite Grown in Mesoporous Matrix. Collection of Czechoslovak Chemical Communications, 2005, 70, 1829-1847.	1.0	7
448	Zeolite Crystal Layers Coupled To Piezoelectric Sensors: Molecular Recognition Demces. Materials Research Society Symposia Proceedings, 1991, 233, 175.	0.1	6
449	Lipid-bilayer coated nanosized bimodal mesoporous carbon spheres for controlled release applications. Journal of Materials Chemistry B, 2015, 3, 9323-9329.	2.9	6
450	Nonagglomerated Iron Oxyhydroxide Akaganeite Nanocrystals Incorporating Extraordinary High Amounts of Different Dopants. Chemistry of Materials, 2017, 29, 7223-7233.	3.2	6

#	Article	IF	CITATIONS
451	When more could be industry-driven: the case of the extracorporeal treatment of sepsis. Intensive Care Medicine, 2019, 45, 1622-1625.	3.9	6
452	Formation and Characterization of Inorganic Membranes from Zeolite-Silica Microcomposites. Materials Research Society Symposia Proceedings, 1988, 121, 761.	0.1	5
453	Growth of oriented molecular sieves on organic layers. Studies in Surface Science and Catalysis, 1997, 105, 2147-2154.	1.5	5
454	Novel colloidal aluminophosphate synthesized under microwave irradiation. Journal of Materials Chemistry, 2004, 14, 2972-2974.	6.7	5
455	Nanoparticle mediated delivery and small molecule triggered activation of proteins in the nucleus. Nucleus, 2018, 9, 530-542.	0.6	5
456	Molecular Recognition on Acoustic Wave Devices: Modified Zeolite-Silica Thin Films With Tailored Adsorption Properties. Materials Research Society Symposia Proceedings, 1992, 271, 435.	0.1	4
457	Nanometre assembly lines. Nature, 1993, 361, 207-208.	13.7	4
458	Bimetallic Complexes in Zeolites: Reactivity of Tetracarbonyl (trimethylstannyl) cobalt in Acidic Zeolite Y. The Journal of Physical Chemistry, 1994, 98, 13651-13657.	2.9	4
459	All-inorganic core–shell silica–titania mesoporous colloidal nanoparticles showing orthogonal functionality. Journal of Materials Chemistry, 2011, 21, 13817.	6.7	4
460	Influence of crystallisation on the structural and optical properties of lead-free Cs ₂ AgBiBr ₆ perovskite crystals. CrystEngComm, 2021, 23, 6848-6854.	1.3	4
461	An Electrically Conducting Threeâ€Dimensional Iron–Catecholate Porous Framework. Angewandte Chemie, 2021, 133, 18213-18220.	1.6	4
462	C4 olefin conversion on reduced nickel y faujasite: Evidence for C5 olefin formation via C4 olefin disproportionation. Reaction Kinetics and Catalysis Letters, 1984, 26, 153-157.	0.6	3
463	Intrazeolite attachment of a Ge–Mo heterobimetallic complex. Journal of the Chemical Society Chemical Communications, 1990, , 28-29.	2.0	3
464	Doping And Band-Gap Engineering Of An Intrazeolite Tungsten(Vi) Oxide Supralatiice. Materials Research Society Symposia Proceedings, 1991, 233, 109.	0.1	3
465	Supramolecular Architecture. ACS Symposium Series, 1992, , 1-7.	0.5	3
466	Title is missing!. Journal of Materials Science Letters, 2003, 22, 751-753.	0.5	3
467	Colloidal molecular sieves: Model system for kinetic study of crystal growth process. Studies in Surface Science and Catalysis, 2004, 154, 163-170.	1.5	3
468	Sequential transformations of organic nitrogen functionalities in periodic mesoporous silica. Journal of Materials Chemistry, 2008, 18, 3103.	6.7	3

#	Article	IF	CITATIONS
469	Perovskite Solar Cells: Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells (Adv. Energy Mater. 16/2017). Advanced Energy Materials, 2017, 7, .	10.2	3
470	Efficient functionalization of mesoporous MCM-41 with aromatic organo-lithium reagents. Microporous and Mesoporous Materials, 2016, 223, 219-224.	2.2	2
471	Ensuring editorial continuity and quality of science during the COVID-19 storm: the ICM experience. Intensive Care Medicine, 2020, 46, 1918-1920.	3.9	2
472	Dehydrogenative 6Ï€ heterocyclization under visible light irradiation and mechanistic insights. Organic Chemistry Frontiers, 2021, 8, 3788-3795.	2.3	2
473	Electron Microscopy Reveals the Nucleation Mechanism of Zeolite Y from Precursor Colloids. , 1999, 38, 3201.		2
474	Mesoporous Biodegradable Magnesium Phosphate-Citrate Nanocarriers Amplify Methotrexate Anticancer Activity in HeLa Cells. Bioconjugate Chemistry, 2022, 33, 566-575.	1.8	2
475	Helical Anthracene–Ethyne-Based MOF-74 Analogue. Crystal Growth and Design, 2022, 22, 2849-2853.	1.4	2
476	Oxometalate-Glass Composites and Thin Films. Materials Research Society Symposia Proceedings, 1990, 180, 595.	0.1	1
477	EXAFS Analysis of Size-Constrained Semiconducting Materials. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 181, 305-314.	0.3	1
478	A Man for Single Molecules. ChemPhysChem, 2012, 13, 883-884.	1.0	1
479	Guided in Situ Polymerization of MEH-PPV in Mesoporous Titania Photoanodes. ACS Applied Materials & Lamp; Interfaces, 2015, 7, 10356-10364.	4.0	1
480	Building Single-Layer Titania Mesopores One by One. Matter, 2019, 1, 306-308.	5.0	1
481	Nanocelluloseâ€Mediated Transition of Lithiumâ€Rich Pseudoâ€Quaternary Metal Oxide Nanoparticles into Lithium Nickel Cobalt Manganese Oxide (NCM) Nanostructures. ChemNanoMat, 2020, 6, 618-628.	1.5	1
482	Efficient Assays for Combinatorial Methods for the Discovery of Catalysts., 1999, 38, 323.		1
483	Surface Chemistry Of Heterobimetallic Ge-M (M = Mo, W) Complexes In Zeolite Y. Materials Research Society Symposia Proceedings, 1991, 233, 195.	0.1	O
484	Attachment and reactivity of tin-cobalt and tin-molybdenumcomplexes in Y zeolites and MCM-41. Studies in Surface Science and Catalysis, 1995, 98, 138-139.	1.5	0
485	Spin-coating induced self-assembly of pure silica and Fe-containing mesoporous films. Studies in Surface Science and Catalysis, 2002, 142, 1465-1472.	1.5	0
486	Photoâ€induced Drug Delivery: Cascaded Photoinduced Drug Delivery to Cells from Multifunctional Coreâ€"Shell Mesoporous Silica (Adv. Healthcare Mater. 3/2012). Advanced Healthcare Materials, 2012, 1, 360-360.	3.9	0

#	Article	IF	CITATIONS
487	Biomedical Applications: Controlling The Mobility Of Oligonucleotides In The Nanochannels Of Mesoporous Silica (Adv. Funct. Mater. 1/2012). Advanced Functional Materials, 2012, 22, 2-2.	7.8	O
488	Nickel Oxide: Electron-Blocking and Oxygen Evolution Catalyst Layers by Plasma-Enhanced Atomic Layer Deposition of Nickel Oxide (Adv. Mater. Interfaces 16/2018). Advanced Materials Interfaces, 2018, 5, 1870079.	1.9	0
489	Local Disorder at the Phase Transition Interrupts Ambipolar Charge Carrier Transport in Large Crystal Methylammonium Lead Iodide Thin Films. Journal of Physical Chemistry C, 2020, 124, 20757-20764.	1.5	0
490	Titelbild: An Electrically Conducting Threeâ€Dimensional Iron–Catecholate Porous Framework (Angew.) Tj ETÇ	q0,00 rgF	BT /Overlock
491	Frontispiece: Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0
492	Frontispiz: IsoretikulÃ ¤ e Kristallisation von hochporösen kubischen kovalentorganischen Kögverbindungen. Angewandte Chemie, 2021, 133, .	1.6	0
493	Inclusion of Organometallics in Zeolite Host Structures. , 1990, , 339-350.		0
494	SYNTHESIS OF OLIGO- AND POLYTHIOPHENES IN ZEOLITE HOSTS., 1993,, 177-184.		0
495	INTRAZEOLITE CHEMISTRY OF ORGANOMETALLICS WITH METHYL LIGANDS: CYCLOPENTADIENYL METHYL IRONDICARBONYL., 1993, , 169-176.		0
496	Single Electron Tunneling in Molecular Nanostructures of Crystalline Gold Clusters Attached by Dithiols to Au $[111]$: Direct I(V) Measurements of Individual Surface Attached Gold Clusters by STM., 1997,, 489-501.		0
497	Assembly of Oriented Nanometer Channels on Organic Layers. , 1997, , 335-344.		0
498	Origin of Enhanced Efficiency of Tin-doped Ultrathin Hematite Photoanodes for Water-Splitting. , 0, , .		0
499	Origin of Enhanced Efficiency of Tin-doped Ultrathin Hematite Photoanodes for Water-Splitting. , 0, , .		0
500	2D/3D Hybrid Cs2AgBiBr6 Double Perovskite Solar Cells: Improved Energy Level Alignment for Higher Contact-Selectivity and Large Open Circuit Voltage., 0,,.		0
501	Silver-Bismuth based 2D Double Perovskites (4FPEA)4AgBiX8 (X=Cl, Br, I): Highly Oriented Thin Films with Large Domain Sizes and Ultrafast Charge-Carrier Localization. , 0, , .		0