
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10760793/publications.pdf Version: 2024-02-01

LINC X KANC

#	Article	IF	CITATIONS
1	Essential lipid autacoids rewire mitochondrial energy efficiency in metabolic dysfunctionâ€associated fatty liver disease. Hepatology, 2023, 77, 1303-1318.	7.3	10
2	Lipidomic analysis revealed nâ€3 polyunsaturated fatty acids suppressed choroidal thinning and myopia progression in mice. FASEB Journal, 2022, 36, e22312.	0.5	6
3	Decreased Tissue Omega-6/Omega-3 Fatty Acid Ratio Prevents Chemotherapy-Induced Gastrointestinal Toxicity Associated with Alterations of Gut Microbiome. International Journal of Molecular Sciences, 2022, 23, 5332.	4.1	6
4	Beneficial effects of an endogenous enrichment in n3â€PUFAs on Wnt signaling are associated with attenuation of alcoholâ€mediated liver disease in mice. FASEB Journal, 2021, 35, e21377.	0.5	14
5	Docosahexanoic acid signals through the Nrf2–Nqo1 pathway to maintain redox balance and promote neurite outgrowth. Molecular Biology of the Cell, 2021, 32, 511-520.	2.1	9
6	Increased Lipogenesis is Critical for <scp>Self-Renewal</scp> and Growth of Breast Cancer Stem Cells: Impact of Omega-3 Fatty Acids. Stem Cells, 2021, 39, 1660-1670.	3.2	17
7	Endogenous Omegaâ€3 Polyunsaturated Fatty Acids Reduce the Number and Differentiation of White Adipocyte Progenitors in Mice. Obesity, 2020, 28, 235-240.	3.0	3
8	Transcriptional signatures of the small intestinal mucosa in response to ethanol in transgenic mice rich in endogenous n3 fatty acids. Scientific Reports, 2020, 10, 19930.	3.3	3
9	Modulation of the Gut Microbiota during High-Dose Glycerol Monolaurate-Mediated Amelioration of Obesity in Mice Fed a High-Fat Diet. MBio, 2020, 11, .	4.1	59
10	Transgenic conversion of ω-6 to ω-3 polyunsaturated fatty acids via fat-1 reduces the severity of post-traumatic osteoarthritis. Arthritis Research and Therapy, 2020, 22, 83.	3.5	16
11	Multi-omic analysis in transgenic mice implicates omega-6/omega-3 fatty acid imbalance as a risk factor for chronic disease. Communications Biology, 2019, 2, 276.	4.4	55
12	Lifelong n-3 Polyunsaturated Fatty Acid Exposure Modulates Size of Mammary Epithelial Cell Populations and Expression of Caveolae Resident Proteins in Fat-1 Mice. Nutrients, 2019, 11, 2477.	4.1	4
13	Visualizing and Profiling Lipids in the OVLT of Fat-1 and Wild Type Mouse Brains during LPS-Induced Systemic Inflammation Using AP-SMALDI MSI. ACS Chemical Neuroscience, 2019, 10, 4394-4406.	3.5	8
14	Decreased ω-6:ω-3 PUFA ratio attenuates ethanol-induced alterations in intestinal homeostasis, microbiota, and liver injury. Journal of Lipid Research, 2019, 60, 2034-2049.	4.2	39
15	The protective role of endogenous n-3 polyunsaturated fatty acids in <i>Tau</i> Alzheimer's disease mouse model. International Journal of Neuroscience, 2019, 129, 325-336.	1.6	10
16	Acetaminophen-induced liver injury is attenuated in transgenic fat-1 mice endogenously synthesizing long-chain n-3 fatty acids. Biochemical Pharmacology, 2018, 154, 75-88.	4.4	18
17	Experimental Validation of Longitudinal Speed of Sound Estimates in the Diagnosis of Hepatic Steatosis (Part II). Ultrasound in Medicine and Biology, 2018, 44, 2749-2758.	1.5	16
18	An omega-3 polyunsaturated fatty acid derivative, 18-HEPE, protects against CXCR4-associated melanoma metastasis. Carcinogenesis, 2018, 39, 1380-1388.	2.8	25

#	Article	IF	CITATIONS
19	Maternal omega-3 fatty acids regulate offspring obesity through persistent modulation of gut microbiota. Microbiome, 2018, 6, 95.	11.1	65
20	Amelioration of UVB-induced oxidative stress and inflammation in fat-1 transgenic mouse skin. Biochemical and Biophysical Research Communications, 2018, 502, 1-8.	2.1	7
21	Suppression of Postprandial Blood Glucose Fluctuations by a Low-Carbohydrate, High-Protein, and High-Omega-3 Diet via Inhibition of Gluconeogenesis. International Journal of Molecular Sciences, 2018, 19, 1823.	4.1	15
22	Enriched Brain Omega-3 Polyunsaturated Fatty Acids Confer Neuroprotection against Microinfarction. EBioMedicine, 2018, 32, 50-61.	6.1	31
23	Enriched Endogenous Omega-3 Fatty Acids in Mice Ameliorate Parenchymal Cell Death After Traumatic Brain Injury. Molecular Neurobiology, 2017, 54, 3317-3326.	4.0	21
24	Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled by Stem-like Properties Mediated by an Osteopontin–EGFR Pathway. Cancer Research, 2017, 77, 2018-2028.	0.9	80
25	Constitutive ω-3 fatty acid production in fat - 1 transgenic mice and docosahexaenoic acid administration to wild type mice protect against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Biochemical and Biophysical Research Communications, 2017, 487, 847-855.	2.1	10
26	Omega-3 polyunsaturated fatty acids ameliorate ethanol-induced adipose hyperlipolysis: A mechanism for hepatoprotective effect against alcoholic liver disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 3190-3201.	3.8	44
27	Endogenous ω-3 Fatty Acid Production by fat-1 Transgene and Topically Applied Docosahexaenoic Acid Protect against UVB-induced Mouse Skin Carcinogenesis. Scientific Reports, 2017, 7, 11658.	3.3	16
28	Guide for Current Nutrigenetic, Nutrigenomic, and Nutriepigenetic Approaches for Precision Nutrition Involving the Prevention and Management of Chronic Diseases Associated with Obesity. Journal of Nutrigenetics and Nutrigenomics, 2017, 10, 43-62.	1.3	118
29	Omegaâ€3 polyunsaturated fatty acids promote amyloidâ€Î² clearance from the brain through mediating the function of the glymphatic system. FASEB Journal, 2017, 31, 282-293.	0.5	84
30	Maternal dietary imbalance between omega-6 and omega-3 polyunsaturated fatty acids impairs neocortical development via epoxy metabolites. Stem Cells, 2016, 34, 470-482.	3.2	54
31	Mitigation of indomethacin-induced gastrointestinal damages in fat-1 transgenic mice via gate-keeper action of ω-3-polyunsaturated fatty acids. Scientific Reports, 2016, 6, 33992.	3.3	14
32	Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition: Part 1 - Fields of Precision Nutrition. Lifestyle Genomics, 2016, 9, 12-27.	1.7	133
33	Suppressed Helicobacter pylori-associated gastric tumorigenesis in Fat-1 transgenic mice producing endogenous ï‰-3 polyunsaturated fatty acids. Oncotarget, 2016, 7, 66606-66622.	1.8	15
34	Endogenously elevated nâ€3 polyunsaturated fatty acids alleviate acute ethanolâ€induced liver steatosis. BioFactors, 2015, 41, 453-462.	5.4	33
35	n-3 Polyunsaturated fatty acids inhibit Fc ε receptor I-mediated mast cell activation. Journal of Nutritional Biochemistry, 2015, 26, 1580-1588.	4.2	24
36	Omegaâ€3 fatty acids protect from dietâ€induced obesity, glucose intolerance, and adipose tissue inflammation through PPARγâ€dependent and PPARγâ€independent actions. Molecular Nutrition and Food Research, 2015, 59, 957-967.	3.3	46

#	Article	IF	CITATIONS
37	Transgenic ω-3 PUFA enrichment alters morphology and gene expression profile in adipose tissue of obese mice: Potential role for protectins. Metabolism: Clinical and Experimental, 2015, 64, 666-676.	3.4	38
38	A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Scientific Reports, 2015, 5, 11276.	3.3	271
39	Endogenously Generated Omegaâ€3 Fatty Acids Attenuate Vascular Inflammation and Neointimal Hyperplasia by Interaction With Free Fatty Acid Receptor 4 in Mice. Journal of the American Heart Association, 2015, 4, .	3.7	30
40	Autistic Children Exhibit Decreased Levels of Essential Fatty Acids in Red Blood Cells. International Journal of Molecular Sciences, 2015, 16, 10061-10076.	4.1	81
41	Transgenic Mice Convert Carbohydrates to Essential Fatty Acids. PLoS ONE, 2014, 9, e97637.	2.5	10
42	Molecular interplay between \hat{l} 5/ \hat{l} desaturases and long-chain fatty acids in the pathogenesis of non-alcoholic steatohepatitis. Gut, 2014, 63, 344-355.	12.1	107
43	Concise Review: Regulation of Stem Cell Proliferation and Differentiation by Essential Fatty Acids and Their Metabolites. Stem Cells, 2014, 32, 1092-1098.	3.2	79
44	Enriched endogenous omega-3 fatty acids in mice protect against global ischemia injury. Journal of Lipid Research, 2014, 55, 1288-1297.	4.2	39
45	Elevated tissue omega-3 fatty acid status prevents age-related glucose intolerance in fat-1 transgenic mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 186-191.	3.8	32
46	18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload–induced maladaptive cardiac remodeling. Journal of Experimental Medicine, 2014, 211, 1673-1687.	8.5	135
47	The iFat1 transgene permits conditional endogenous n-3 PUFA enrichment both in vitro and in vivo. Transgenic Research, 2014, 23, 489-501.	2.4	4
48	Endogenous ω-3 Polyunsaturated Fatty Acid Production Confers Resistance to Obesity, Dyslipidemia, and Diabetes in Mice. Molecular Endocrinology, 2014, 28, 1316-1328.	3.7	52
49	Double Transgenesis of Humanized fat1 and fat2 Genes Promotes Omega-3 Polyunsaturated Fatty Acids Synthesis in a Zebrafish Model. Marine Biotechnology, 2014, 16, 580-593.	2.4	31
50	Production of fat-1 transgenic rats using a post-natal female germline stem cell line. Molecular Human Reproduction, 2014, 20, 271-281.	2.8	109
51	Matrix Metalloproteinase (MMP)-9 in Cancer-Associated Fibroblasts (CAFs) Is Suppressed by Omega-3 Polyunsaturated Fatty Acids In Vitro and In Vivo. PLoS ONE, 2014, 9, e89605.	2.5	58
52	A Protective Lipidomic Biosignature Associated with a Balanced Omega-6/Omega-3 Ratio in fat-1 Transgenic Mice. PLoS ONE, 2014, 9, e96221.	2.5	32
53	Unesterified docosahexaenoic acid is protective in neuroinflammation. Journal of Neurochemistry, 2013, 127, 378-393.	3.9	140
54	Nutrigenomics and Cancer Therapy. Journal of Nutrigenetics and Nutrigenomics, 2013, 6, I-II.	1.3	8

#	Article	IF	CITATIONS
55	Transgenic mice with high endogenous omega-3 fatty acids are protected from spinal cord injury. Neurobiology of Disease, 2013, 51, 104-112.	4.4	44
56	Inhibition of the HER2 pathway by n-3 polyunsaturated fatty acids prevents breast cancer in fat-1 transgenic mice. Journal of Lipid Research, 2013, 54, 3453-3463.	4.2	35
57	Dr. Alexander Leaf, an exemplary physician–scientist and a great man. Prostaglandins Leukotrienes and Essential Fatty Acids, 2013, 88, 197-199.	2.2	1
58	The role of the tissue omega-6/omega-3 fatty acid ratio in regulating tumor angiogenesis. Cancer and Metastasis Reviews, 2013, 32, 201-210.	5.9	68
59	Deltaâ€6â€desaturase activity and arachidonic acid synthesis are increased in human breast cancer tissue. Cancer Science, 2013, 104, 760-764.	3.9	53
60	Mammary tumor development is directly inhibited by lifelong n-3 polyunsaturated fatty acids. Journal of Nutritional Biochemistry, 2013, 24, 388-395.	4.2	55
61	Increased tissue levels of omega-3 polyunsaturated fatty acids prevents pathological preterm birth. Scientific Reports, 2013, 3, 3113.	3.3	48
62	Omega-3 Polyunsaturated Fatty Acids Suppress the Cystic Lesion Formation of Peritoneal Endometriosis in Transgenic Mouse Models. PLoS ONE, 2013, 8, e73085.	2.5	39
63	Omega-3 Fatty Acids and Hippocampal Neurogenesis in Depression. CNS and Neurological Disorders - Drug Targets, 2013, 12, 460-465.	1.4	33
64	Reduction of heart rate by omega-3 fatty acids and the potential underlying mechanisms. Frontiers in Physiology, 2012, 3, 416.	2.8	34
65	Improved Outcome after Peripheral Nerve Injury in Mice with Increased Levels of Endogenous Omega-3 Polyunsaturated Fatty Acids. Journal of Neuroscience, 2012, 32, 563-571.	3.6	75
66	Amelioration of diabesity-induced colorectal ontogenesis by omega-3 fatty acids in mice. Journal of Lipid Research, 2012, 53, 1056-1070.	4.2	13
67	Nutrigenomics and Systems Biology. Journal of Nutrigenetics and Nutrigenomics, 2012, 5, I-II.	1.3	7
68	Effects of Coptis extract combined with chemotherapeutic agents on ROS production, multidrug resistance, and cell growth in A549 human lung cancer cells. Chinese Medicine, 2012, 7, 11.	4.0	23
69	The Coming of Age of Nutrigenetics and Nutrigenomics. Journal of Nutrigenetics and Nutrigenomics, 2012, 5, I-II.	1.3	13
70	Inhibiting Delta-6 Desaturase Activity Suppresses Tumor Growth in Mice. PLoS ONE, 2012, 7, e47567.	2.5	47
71	High Pancreatic n-3 Fatty Acids Prevent STZ-Induced Diabetes in Fat-1 Mice: Inflammatory Pathway Inhibition. Diabetes, 2011, 60, 1090-1099.	0.6	126
72	Omega-3-Polyunsaturated Fatty Acids Suppress Pancreatic Cancer Cell Growth in vitro and in vivo via Downregulation of Wnt/Beta-Catenin Signaling. Pancreatology, 2011, 11, 574-584.	1.1	68

#	Article	IF	CITATIONS
73	Fat-1 transgenic mice with elevated omega-3 fatty acids are protected from allergic airway responses. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1164-1169.	3.8	85
74	Endogenous Conversion of Omega-6 into Omega-3 Fatty Acids Improves Neuropathology in an Animal Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 27, 853-869.	2.6	66
75	Omega-3: A link between global climate change and human health. Biotechnology Advances, 2011, 29, 388-390.	11.7	44
76	Cox-2 expression, PGE2 and cytokines production are inhibited by endogenously synthesized n-3 PUFAs in inflamed colon of fat-1 mice. Journal of Nutritional Biochemistry, 2011, 22, 360-365.	4.2	62
77	The Omega-6/Omega-3 Fatty Acid Ratio in Chronic Diseases: Animal Models and Molecular Aspects. World Review of Nutrition and Dietetics, 2011, 102, 22-29.	0.3	34
78	Transgenic conversion of omega-6 into omega-3 fatty acids in a mouse model of Parkinson's disease. Journal of Lipid Research, 2011, 52, 263-271.	4.2	61
79	Suppressed liver tumorigenesis in fat-1 mice with elevated omega-3 fatty acids is associated with increased omega-3 derived lipid mediators and reduced TNF-Â. Carcinogenesis, 2011, 32, 897-903.	2.8	121
80	The Fat-1 Mouse has Brain Docosahexaenoic Acid Levels Achievable Through Fish Oil Feeding. Neurochemical Research, 2010, 35, 811-819.	3.3	39
81	Transgenic Restoration of Long-Chain n-3 Fatty Acids in Insulin Target Tissues Improves Resolution Capacity and Alleviates Obesity-Linked Inflammation and Insulin Resistance in High-Fat–Fed Mice. Diabetes, 2010, 59, 3066-3073.	0.6	160
82	Differential effects of omega-6 and omega-3 fatty acids on telomere length. American Journal of Clinical Nutrition, 2010, 92, 1276-1277.	4.7	12
83	Drosophila lacks C20 and C22 PUFAs. Journal of Lipid Research, 2010, 51, 2985-2992.	4.2	85
84	Endogenously Decreasing Tissue n-6/n-3 Fatty Acid Ratio Reduces Atherosclerotic Lesions in <i>Apolipoprotein E</i> –Deficient Mice by Inhibiting Systemic and Vascular Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2487-2494.	2.4	91
85	Cyclooxygenase-2 and n-6 PUFA are lower and DHA is higher in the cortex of fat-1 mice. Neurochemistry International, 2010, 56, 585-589.	3.8	22
86	A decreased <i>n</i> -6/ <i>n</i> -3 ratio in the fat-1 mouse is associated with improved glucose tolerance. Applied Physiology, Nutrition and Metabolism, 2010, 35, 699-706.	1.9	31
87	Fat-1 gene modulates the fatty acid composition of femoral and vertebral phospholipids. Applied Physiology, Nutrition and Metabolism, 2010, 35, 447-455.	1.9	16
88	Supranormal Electroretinogram in <i>Fat-1</i> Mice with Retinas Enriched in Docosahexaenoic Acid and n <i>-</i> 3 Very Long Chain Fatty Acids (C24–C36). , 2009, 50, 4394.		32
89	Docosahexaenoic acid suppresses arachidonic acid-induced proliferation of LS-174T human colon carcinoma cells. World Journal of Gastroenterology, 2009, 15, 1079.	3.3	35
90	Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11370-11375.	7.1	203

#	Article	IF	CITATIONS
91	Acute Lung Injury Is Reduced in <i>fat-1</i> Mice Endogenously Synthesizing n-3 Fatty Acids. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 474-483.	5.6	50
92	Vertebrae of Developing Fat-1 Mice Have Greater Strength and Lower N-6/N-3 Fatty Acid Ratio. Experimental Biology and Medicine, 2009, 234, 632-638.	2.4	16
93	Endogenous nâ€3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis. Journal of Cellular and Molecular Medicine, 2009, 13, 1833-1844.	3.6	69
94	Femur EPA and DHA are correlated with femur biomechanical strength in young fat-1 mice. Journal of Nutritional Biochemistry, 2009, 20, 453-461.	4.2	37
95	Panax notoginseng Reduces Atherosclerotic Lesions in ApoE-Deficient Mice and Inhibits TNF-α-Induced Endothelial Adhesion Molecule Expression and Monocyte Adhesion. Journal of Agricultural and Food Chemistry, 2009, 57, 6692-6697.	5.2	68
96	Coptis extracts enhance the anticancer effect of estrogen receptor antagonists on human breast cancer cells. Biochemical and Biophysical Research Communications, 2009, 378, 174-178.	2.1	74
97	Gene and protein expression profiling of the fat-1 mouse brain. Prostaglandins Leukotrienes and Essential Fatty Acids, 2009, 80, 33-42.	2.2	15
98	Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis. Journal of Cellular and Molecular Medicine, 2009, 13, 1833-1844.	3.6	44
99	Evaluation of a rapid method for the quantitative analysis of fatty acids in various matrices. Journal of Chromatography A, 2008, 1212, 106-113.	3.7	96
100	Seizure resistance in fat-1 transgenic mice endogenously synthesizing high levels of omega-3 polyunsaturated fatty acids. Journal of Neurochemistry, 2008, 105, 380-388.	3.9	40
101	Reduction of inflammation and chronic tissue damage by omega-3 fatty acids in fat-1 transgenic mice with pancreatitis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 634-641.	3.8	53
102	Modulation of Inflammatory Cytokines by Omega-3 Fatty Acids. Sub-Cellular Biochemistry, 2008, 49, 133-143.	2.4	143
103	A Transgenic Mouse Model for Gene–Nutrient Interactions. Journal of Nutrigenetics and Nutrigenomics, 2008, 1, 172-177.	1.3	23
104	Fish Oil Fatty Acids as Cardiovascular Drugs. Current Vascular Pharmacology, 2008, 6, 1-12.	1.7	55
105	Reduced Colitis-Associated Colon Cancer in <i>Fat-1</i> (<i>n</i> -3 Fatty Acid Desaturase) Transgenic Mice. Cancer Research, 2008, 68, 3985-3991.	0.9	124
106	Omega-6/Omega-3 Fatty Acid Ratio is Important for Health. , 2008, , 35-49.		2
107	Effect of endogenous nâ€3 PUFA on inflammation and oxidative stress. FASEB Journal, 2008, 22, 1094.1.	0.5	1
108	Colitis-associated colon tumorigenesis is suppressed in transgenic mice rich in endogenous n-3 fatty acids. Carcinogenesis, 2007, 28, 1991-1995.	2.8	98

#	Article	IF	CITATIONS
109	Fat-1 transgenic mice: A new model for omega-3 research. Prostaglandins Leukotrienes and Essential Fatty Acids, 2007, 77, 263-267.	2.2	148
110	Lipoxins and resolvins in inflammatory bowel disease. Inflammatory Bowel Diseases, 2007, 13, 797-799.	1.9	47
111	Omega-3 fatty acids alleviate chemically induced acute hepatitis by suppression of cytokines. Hepatology, 2007, 45, 864-869.	7.3	139
112	Why the omega-3 piggy should go to market. Nature Biotechnology, 2007, 25, 505-506.	17.5	9
113	Increased dietary intake of ï‰-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nature Medicine, 2007, 13, 868-873.	30.7	633
114	Activation of Stat5 and induction of a pregnancy-like mammary gland differentiation by eicosapentaenoic and docosapentaenoic omega-3 fatty acids. FEBS Journal, 2007, 274, 3351-3362.	4.7	18
115	Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. Journal of Clinical Investigation, 2007, 117, 1866-1875.	8.2	225
116	Fatâ€l transgenic mice endogenously synthesizing high levels of nâ^'3 PUFA are resistant to pentylenetetrazol induced seizures. FASEB Journal, 2007, 21, A322.	0.5	0
117	Inhibition of inflammatory response in transgenic fat-1 mice on a calorie-restricted diet. Biochemical and Biophysical Research Communications, 2006, 349, 925-930.	2.1	47
118	Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nature Biotechnology, 2006, 24, 435-436.	17.5	323
119	nâ€3 polyunsaturated fatty acids endogenously synthesized in fatâ€1 mice are enriched in the mammary gland. Lipids, 2006, 41, 35-39.	1.7	42
120	Melanoma growth is reduced in fat-1 transgenic mice: Impact of omega-6/omega-3 essential fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12499-12504.	7.1	125
121	Cloned Transgenic Swine Via In Vitro Production and Cryopreservation1. Biology of Reproduction, 2006, 75, 226-230.	2.7	69
122	Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11276-11281.	7.1	361
123	A simplified method for analysis of polyunsaturated fatty acids. , 2005, 6, 5.		171
124	The extract of huanglian, a medicinal herb, induces cell growth arrest and apoptosis by upregulation of interferon-β and TNF-α in human breast cancer cells. Carcinogenesis, 2005, 26, 1934-1939.	2.8	86
125	Prevention of Fatal Arrhythmias in High-Risk Subjects by Fish Oil n-3 Fatty Acid Intake. Circulation, 2005, 112, 2762-2768.	1.6	346
126	Rethinking lipid mediators. Lancet, The, 2005, 366, 618-620.	13.7	70

#	Article	IF	CITATIONS
127	Decreased n -6/ n -3 fatty acid ratio reduces the invasive potential of human lung cancer cells by downregulation of cell adhesion/invasion-related genes. Carcinogenesis, 2005, 26, 779-784.	2.8	84
128	Omega–3 Fatty Acids and Ventricular Arrhythmias. , 2005, 94, 129-138.		10
129	Achieving Balance in the Omega—6/Omega—3 Ratio through Nutrigenomics. , 2004, 93, 92-98.		4
130	Fat-1 mice convert n-6 to n-3 fatty acids. Nature, 2004, 427, 504-504.	27.8	480
131	Prevention of sudden cardiac death by nâ^'3 polyunsaturated fatty acids. , 2003, 98, 355-377.		143
132	Clinical Prevention of Sudden Cardiac Death by n-3 Polyunsaturated Fatty Acids and Mechanism of Prevention of Arrhythmias by n-3 Fish Oils. Circulation, 2003, 107, 2646-2652.	1.6	542
133	The Importance of Omega-6/Omega-3 Fatty Acid Ratio in Cell Function. , 2003, 92, 23-36.		64
134	Decreased expression of the mannose 6- phosphate/insulin-like growth factor-II receptor promotes growth of human breast cancer cells. BMC Cancer, 2002, 2, 18.	2.6	43
135	Effects of adenoviral gene transfer of C. elegans n-3 fatty acid desaturase on the lipid profile and growth of human breast cancer cells. Anticancer Research, 2002, 22, 537-43.	1.1	42
136	Partitioning of polyunsaturated fatty acids, which prevent cardiac arrhythmias, into phospholipid cell membranes. Journal of Lipid Research, 2001, 42, 346-351.	4.2	83
137	Prevention of fatal cardiac arrhythmias by polyunsaturated fatty acids. American Journal of Clinical Nutrition, 2000, 71, 202S-207S.	4.7	192
138	n-3 fatty acids in the prevention of cardiac arrhythmias. Lipids, 1999, 34, S187-S189.	1.7	54
139	Prevention of Sudden Cardiac Death by Dietary Pure ω-3 Polyunsaturated Fatty Acids in Dogs. Circulation, 1999, 99, 2452-2457.	1.6	382
140	Anticonvulsant effect of polyunsaturated fatty acids in rats, using the cortical stimulation model. European Journal of Pharmacology, 1998, 341, 145-152.	3.5	127
141	Differential Effects of Various Eicosanoids on the Production or Prevention of Arrhythmias in Cultured Neonatal Rat Cardiac Myocytes. Prostaglandins, 1997, 54, 511-530.	1.2	110
142	Prevention of ischemia-induced cardiac Sudden death by nâ^'3 polyunsaturated fatty acids in dogs. Lipids, 1997, 32, 1161-1168.	1.7	180
143	Physiological Effects of Adenoviral Gene Transfer of Sarcoplasmic Reticulum Calcium ATPase in Isolated Rat Myocytes. Circulation, 1997, 95, 423-429.	1.6	158
144	Adenoviral Gene Transfer of Phospholamban in Isolated Rat Cardiomyocytes. Circulation Research, 1997, 81, 145-153.	4.5	99

#	Article	IF	CITATIONS
145	Protective effects of free polyunsaturated fatty acids on arrhythmias induced by lysophosphatidylcholine or palmitoylcarnitine in neonatal rat cardiac myocytes. European Journal of Pharmacology, 1996, 297, 97-106.	3.5	114
146	Polyunsaturated fatty acids exert antiarrhythmic actions as free acids rather than in phospholipids. Lipids, 1996, 31, 977-982.	1.7	65
147	The cardiac antiarrhythmic effects of polyunsaturated fatty acid. Lipids, 1996, 31, S41-S44.	1.7	60
148	Antiarrhythmic Effects of Polyunsaturated Fatty Acids. Circulation, 1996, 94, 1774-1780.	1.6	196
149	Protective Effects of All-Trans-Retinoic Acid Against Cardiac Arrhythmias Induced by Isoproterenol, Lysophosphatidylcholine or Ischemia and Reperfusion. Journal of Cardiovascular Pharmacology, 1995, 26, 943-948.	1.9	29
150	Essential fatty acid metabolism in cultured human airway epithelial cells. Lipids and Lipid Metabolism, 1992, 1128, 267-274.	2.6	15