
Robert Verger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10758329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipases: Interfacial Enzymes with Attractive Applications. Angewandte Chemie - International Edition, 1998, 37, 1608-1633.	13.8	1,069
2	â€~Interfacial activation' of lipases: facts and artifacts. Trends in Biotechnology, 1997, 15, 32-38.	9.3	738
3	Interfacial activation of the lipase–procolipase complex by mixed micelles revealed by X-ray crystallography. Nature, 1993, 362, 814-820.	27.8	712
4	Action of Phospholipase A at Interfaces. Journal of Biological Chemistry, 1973, 248, 4023-4034.	3.4	462
5	Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology, 1993, 105, 876-888.	1.3	415
6	Structure of the pancreatic lipase–procolipase complex. Nature, 1992, 359, 159-162.	27.8	374
7	Enzyme reactions in a membrane model 1: A new technique to study enzyme reactions in monolayers. Chemistry and Physics of Lipids, 1973, 10, 127-136.	3.2	360
8	Methods for lipase detection and assay: a critical review. European Journal of Lipid Science and Technology, 2000, 102, 133-153.	1.5	287
9	The 2.46 .ANG. Resolution Structure of the Pancreatic Lipase-Colipase Complex Inhibited by a C11 Alkyl Phosphonate. Biochemistry, 1995, 34, 2751-2762.	2.5	286
10	Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality, 1993, 5, 24-30.	2.6	241
11	Kinetic assay of human gastric lipase on short- and long-chain triacylglycerol emulsions. Gastroenterology, 1986, 91, 919-925.	1.3	223
12	Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry, 1994, 33, 83-89.	2.5	176
13	The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology, 2000, 119, 949-960.	1.3	159
14	Importance of human gastric lipase for intestinal lipolysis: an in vitro study. Lipids and Lipid Metabolism, 1986, 879, 419-423.	2.6	151
15	Crystal Structure of Human Gastric Lipase and Model of Lysosomal Acid Lipase, Two Lipolytic Enzymes of Medical Interest. Journal of Biological Chemistry, 1999, 274, 16995-17002.	3.4	150
16	Human preduodenal lipase is entirely of gastric fundic origin. Gastroenterology, 1988, 95, 1221-1226.	1.3	149
17	Molecular cloning of a human gastric lipase and expression of the enzyme in yeast. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1987, 909, 237-244.	2.4	147
18	Evidence for a Pancreatic Lipase Subfamily with New Kinetic Properties. Biochemistry, 1994, 33, 2748-2756.	2.5	142

#	Article	IF	CITATIONS
19	Correlation of Enzymatic Activity and Anticoagulant Properties of Phospholipase A2. FEBS Journal, 1980, 112, 25-32.	0.2	135
20	Inhibition of gastrointestinal lipolysis by Orlistat during digestion of test meals in healthy volunteers. American Journal of Physiology - Renal Physiology, 2001, 281, G16-G28.	3.4	133
21	Gastric lipases: biochemical and physiological studies. Lipids and Lipid Metabolism, 1989, 1006, 255-271.	2.6	131
22	Structural basis for the substrate selectivity of pancreatic lipases and some related proteins. BBA - Biomembranes, 1998, 1376, 417-432.	8.0	126
23	[16] A critical reevaluation of the phenomenon of interfacial activation. Methods in Enzymology, 1997, 286, 327-347.	1.0	125
24	Effects of Gum Arabic on Lipase Interfacial Binding and Activity. Analytical Biochemistry, 2001, 294, 36-43.	2.4	122
25	Purification and Characterization of a Porcine Liver Microsomal Triacylglycerol Hydrolaseâ€. Biochemistry, 1997, 36, 1861-1868.	2.5	114
26	Purification and biochemical characterization of dog gastric lipase. FEBS Journal, 1991, 202, 75-83.	0.2	112
27	Crystal Structure of the Open Form of Dog Gastric Lipase in Complex with a Phosphonate Inhibitor. Journal of Biological Chemistry, 2002, 277, 2266-2274.	3.4	107
28	A pancreatic lipase with a phospholipase A1 activity: crystal structure of a chimeric pancreatic lipase-related protein 2 from guinea pig. Structure, 1996, 4, 1363-1374.	3.3	105
29	Digestive lipases: From three-dimensional structure to physiology. Biochimie, 2000, 82, 973-986.	2.6	104
30	A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase. FEBS Journal, 2000, 267, 6459-6469.	0.2	97
31	Pancreatic lipase-related protein 2 but not classical pancreatic lipase hydrolyzes galactolipids. Lipids and Lipid Metabolism, 1996, 1302, 236-240.	2.6	96
32	Human Pancreatic Lipase-Related Protein 2 Is a Galactolipaseâ€. Biochemistry, 2004, 43, 10138-10148.	2.5	95
33	Screening of preduodenal lipases in several mammals. Lipids and Lipid Metabolism, 1988, 959, 247-252.	2.6	91
34	Minireview on pancreatic lipase and colipase. Biochimie, 1988, 70, 1223-1233.	2.6	89
35	Pancreatic Lipase Structureâ^'Function Relationships by Domain Exchange. Biochemistry, 1997, 36, 239-248.	2.5	89
36	Human gastric lipase. The effect of amphiphiles. FEBS Journal, 1986, 156, 305-310.	0.2	86

3.2

52

#	Article	IF	CITATIONS
37	Inactivation of gastric and pancreatic lipases by diethyl p-nitrophenyl phosphate. Biochemistry, 1991, 30, 1037-1041.	2.5	86
38	In vivo and in vitro studies on the stereoselective hydrolysis of tri- and diglycerides by gastric and pancreatic lipases. Bioorganic and Medicinal Chemistry, 1997, 5, 429-435.	3.0	79
39	Oil-bodies as substrates for lipolytic enzymes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1531, 47-58.	2.4	79
40	Probing the Opening of the Pancreatic Lipase Lid Using Site-Directed Spin Labeling and EPR Spectroscopy. Biochemistry, 2007, 46, 2205-2214.	2.5	79
41	Purification, characterization and kinetic properties of the rabbit gastric lipase. Lipids and Lipid Metabolism, 1988, 960, 286-293.	2.6	76
42	Structure and Activity of Rat Pancreatic Lipase-related Protein 2. Journal of Biological Chemistry, 1998, 273, 32121-32128.	3.4	76
43	Synthesis and Study of a Lipophilicα-Keto Amide Inhibitor of Pancreatic Lipase. Organic Letters, 2000, 2, 347-350.	4.6	75
44	Conformational Changes and Orientation of Humicola lanuginosa Lipase on a Solid Hydrophobic Surface: An in Situ Interface Fourier Transform Infrared-Attenuated Total Reflection Study. Biophysical Journal, 2002, 82, 2709-2719.	0.5	75
45	Human Pancreatic Lipase: Colipase Dependence and Interfacial Binding of Lid Domain Mutantsâ€. Biochemistry, 1999, 38, 5499-5510.	2.5	72
46	Inhibition of lipases by proteins: a binding study using dicaprin monolayers. Biochemistry, 1986, 25, 1733-1738.	2.5	68
47	Lipase stereoselectivity and regioselectivity toward three isomers of dicaprin: A kinetic study by the monomolecular film technique. Chirality, 1995, 7, 505-515.	2.6	62
48	Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase. Protein Science, 1995, 4, 44-57.	7.6	58
49	Covalent inhibition of digestive lipases: an in vitro study. Lipids and Lipid Metabolism, 1997, 1344, 6-37.	2.6	58
50	Lipases or Esterases: Does It Really Matter? Toward a New Bio-Physico-Chemical Classification. Methods in Molecular Biology, 2012, 861, 31-51.	0.9	58
51	Interactions between β-cyclodextrin and insoluble glyceride monomolecular films at the argon/water interface: application to lipase kinetics. Chemistry and Physics of Lipids, 1994, 70, 35-42.	3.2	55
52	Inactivation of pancreatic and gastric lipases by tetrahydrolipstatin and alkyl-dithio-5-(2-nitrobenzoic) Tj ETQqO	00 ₇₂ BT/(Overlock 10 Tr
53	Reactivation of the totally inactive pancreatic lipase RP1 by structure-predicted point mutations. Proteins: Structure, Function and Bioinformatics, 1998, 32, 523-531.	2.6	52

⁵⁴ Surface behaviour of bile salts and tetrahydrolipstatin at air/water and oil/water interfaces. Chemistry and Physics of Lipids, 2001, 111, 73-85.

#	Article	IF	CITATIONS
55	Intestinal Phospholipase, a Novel Enzyme. Journal of Clinical Investigation, 1982, 69, 368-376.	8.2	52
56	Binding ofThermomyces(Humicola)lanuginosalipase to the mixed micelles ofcis-parinaric acid/NaTDC. FEBS Journal, 2002, 269, 1613-1621.	0.2	51
57	Possible roles of bile lipids and colipase in lipase adsorption. Biochemistry, 1978, 17, 5263-5269.	2.5	49
58	N-terminal peptide ofRhizopus oryzaelipase is important for its catalytic properties. FEBS Letters, 2005, 579, 976-982.	2.8	48
59	Title is missing!. Molecular Breeding, 2001, 7, 329-340.	2.1	47
60	Biochemical properties and three-dimensional structures of two extracellular lipolytic enzymes from Bacillus subtilis. Colloids and Surfaces B: Biointerfaces, 2002, 26, 37-46.	5.0	47
61	Pancreatic lipase-related protein 1 (PLRP1) is present in the pancreatic juice of several species. BBA - Proteins and Proteomics, 1998, 1387, 331-341.	2.1	46
62	Use of the Tape Stripping Technique for Directly Quantifying Esterase Activities in Human Stratum Corneum. Analytical Biochemistry, 2001, 290, 179-185.	2.4	45
63	[10] Covalent inactivation of lipases. Methods in Enzymology, 1997, 286, 190-231.	1.0	43
64	Synthesis of 2â€Oxo Amide Triacylglycerol Analogues and Study of Their Inhibition Effect on Pancreatic and Gastric Lipases. Chemistry - A European Journal, 2000, 6, 4211-4217.	3.3	42
65	Might the Kinetic Behavior of Hormone-Sensitive Lipase Reflect the Absence of the Lid Domain?. Biochemistry, 2004, 43, 9298-9306.	2.5	42
66	Covalent Inhibition of Digestive Lipases by Chiral Phosphonates. Accounts of Chemical Research, 2000, 33, 579-589.	15.6	41
67	Role of a sulfhydryl group in gastric lipases. A binding study using the monomolecular-film technique. FEBS Journal, 1989, 180, 367-371.	0.2	40
68	Isoform purification of gastric lipases. Journal of Molecular Biology, 1992, 225, 147-153.	4.2	39
69	Digestive lipases: Inactivation by phosphonates. Lipids and Lipid Metabolism, 1994, 1210, 157-166.	2.6	39
70	Egg yolk lipoproteins as substrates for lipases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1485, 56-62.	2.4	39
71	Bis-2-oxo Amide Triacylglycerol Analogues:Â A Novel Class of Potent Human Gastric Lipase Inhibitors. Journal of Organic Chemistry, 2001, 66, 962-967.	3.2	39
72	Dog gastric lipase: Stimulation of its secretion in vivo and cytolocalization in mucous pit cells. Gastroenterology, 1992, 102, 1535-1545.	1.3	37

#	Article	IF	CITATIONS
73	Crystallization of Pancreatic Procolipase and of its Complex with Pancreatic Lipase. Journal of Molecular Biology, 1993, 229, 552-554.	4.2	37
74	Interfacial and temporal organization of enzymatic lipolysis. Current Opinion in Colloid and Interface Science, 1997, 2, 517-525.	7.4	37
75	Use of naturally fluorescent triacylglycerols from Parinari glaberrimum to detect low lipase activities from Arabidopsis thaliana seedlings. Journal of Lipid Research, 1999, 40, 2313-2321.	4.2	36
76	Surface behaviour of human pancreatic and gastric lipases. Colloids and Surfaces B: Biointerfaces, 1994, 2, 585-593.	5.0	35
77	Hydrolysis of monomolecular films of long chain phosphatidylcholine by phospholipase A2 in the presence of β-cyclodextrin. Colloids and Surfaces B: Biointerfaces, 1996, 6, 9-17.	5.0	35
78	Human Pancreatic Lipase:Â An Exposed Hydrophobic Loop from the C-terminal Domain May Contribute to Interfacial Binding. Biochemistry, 1998, 37, 11846-11855.	2.5	35
79	An Ultraviolet Spectrophotometric Assay for Measuring Lipase Activity Using Long-Chain Triacyglycerols from Aleurites fordii Seeds. Analytical Biochemistry, 2002, 303, 17-24.	2.4	35
80	Hydrolysis of 1-palmitoyl-2-[6-(pyren-1-yl)]hexanoyl-sn-glycero-3-phospholipids by phospholipase A2: effect of the polar head-group. Lipids and Lipid Metabolism, 1987, 917, 411-417.	2.6	33
81	[13] Monolayer techniques for studying lipase kinetics. Methods in Enzymology, 1997, 286, 263-292.	1.0	33
82	Structure–function relationships in naturally occurring mutants of pancreatic lipase. Protein Engineering, Design and Selection, 1994, 7, 563-569.	2.1	32
83	Inhibition of human gastric and pancreatic lipases by chiral alkylphosphonates. A kinetic study with 1,2-didecanoyl-sn-glycerol monolayer. Chemistry and Physics of Lipids, 1999, 100, 3-31.	3.2	32
84	Kinetic behaviour of pancreatic lipase in five species using emulsions and monomolecular films of synthetic glycerides. Lipids and Lipid Metabolism, 1995, 1257, 223-229.	2.6	31
85	Purification and Interfacial Behavior of Recombinant Human Gastric Lipase Produced from Insect Cells in a Bioreactor. Protein Expression and Purification, 1998, 14, 23-30.	1.3	31
86	Continuous monitoring of cholesterol oleate hydrolysis by hormone-sensitive lipase and other cholesterol esterases. Journal of Lipid Research, 2005, 46, 994-1000.	4.2	31
87	Surface properties of bacterial sulfhydryl-activated cytolytic toxins. Interaction with monomolecular films of phosphatidylcholine and various sterols. FEBS Journal, 1984, 141, 205-210.	0.2	30
88	Human gastric lipase. A kinetic study with dicaprin monolayers. FEBS Journal, 1987, 169, 125-129.	0.2	30
89	Interfacial Binding of Human Gastric Lipase to Lipid Monolayers, Measured with an ELISA. Biochemistry, 1995, 34, 10786-10793.	2.5	30
90	Kinetic studies of Rhizopus oryzae lipase using monomolecular film technique. Biochimie, 2001, 83, 463-469.	2.6	30

#	Article	IF	CITATIONS
91	Porcine pancreatic procolipase and its trypsin-activated form. FEBS Letters, 1981, 128, 217-220.	2.8	29
92	Regulation by the "interfacial quality―of some biological activities. Colloids and Surfaces, 1984, 10, 163-180.	0.9	29
93	Purification and molecular characterization of lamb pregastric lipase. BBA - Proteins and Proteomics, 1995, 1252, 321-329.	2.1	29
94	Study of Fatty Acid Specificity of Sunflower Phospholipase D using Detergent/Phospholipid Micelles. FEBS Journal, 1997, 248, 374-379.	0.2	29
95	The influence of bile salts and bile lipoprotein complex on pancreatic lipase hydrolysis of monomolecular films. Lipids and Lipid Metabolism, 1980, 618, 106-118.	2.6	27
96	The molecular mechanism of human hormone-sensitive lipase inhibition by substituted 3-phenyl-5-alkoxy-1,3,4-oxadiazol-2-ones. Biochimie, 2012, 94, 137-145.	2.6	27
97	Effects of Colipase and Bile Salts on the Catalytic Activity of Human Pancreatic Lipase. A Study Using the Oil Drop Tensiometer. Biochemistry, 1997, 36, 3423-3429.	2.5	25
98	Physiology of Gastrointestinal Lipolysis and Therapeutical Use of Lipases and Digestive Lipase Inhibitors. , 2005, , 195-229.		24
99	Importance of sulfhydryl group for rabbit gastric lipase activity. FEBS Letters, 1988, 236, 383-387.	2.8	23
100	Mechanisms underlying the desorption of long-chain lipolytic products by cyclodextrins: application to lipase kinetics in monolayer. Colloids and Surfaces B: Biointerfaces, 1997, 10, 1-12.	5.0	23
101	The N-terminal His-tag affects the enantioselectivity of staphylococcal lipases: A monolayer study. Journal of Colloid and Interface Science, 2007, 313, 261-267.	9.4	23
102	Inhibition of lipase adsorption at interfaces. Role of bile salt micelles and colipase. Biochemistry, 1978, 17, 205-208.	2.5	22
103	Surface properties of unsaturated non-oxidized and oxidized free fatty acids spread as monomolecular films at an argon/water interface. Chemistry and Physics of Lipids, 2000, 104, 93-99.	3.2	22
104	Lipase regio- and stereoselectivities toward three enantiomeric pairs of didecanoyl-deoxyamino-O methyl glycerol: A kinetic study by the monomolecular film technique. Chirality, 2003, 15, 220-226.	2.6	22
105	Heterologous expression and N-terminal His-tagging processes affect the catalytic properties of staphylococcal lipases: A monolayer study. Journal of Colloid and Interface Science, 2010, 350, 586-594.	9.4	22
106	Molecular evolution of the pancreatic lipase and two related enzymes towards different substrate selectivities. Journal of Molecular Catalysis B: Enzymatic, 1997, 3, 55-64.	1.8	21
107	Gastric lipase: crystal structure and activity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1441, 197-204.	2.4	21
108	Synthetic routes and lipase-inhibiting activity of long-chain α-keto amides. Lipids, 2001, 36, 535-542.	1.7	21

#	Article	IF	CITATIONS
109	Transfer of orlistat through oil–water interfaces. Chemistry and Physics of Lipids, 2002, 119, 41-49.	3.2	21
110	Interfacial and/or molecular recognition by lipases of mixed monomolecular films of 1,2-dicaprin and chiral organophosphorus glyceride analogues?. Colloids and Surfaces B: Biointerfaces, 1999, 13, 37-45.	5.0	20
111	A conformational transition between an open and closed form of human pancreatic lipase revealed by a monoclonal antibody. BBA - Proteins and Proteomics, 2000, 1476, 165-172.	2.1	20
112	Epitope mapping and immunoinactivation of human gastric lipase using five monoclonal antibodies. FEBS Journal, 1993, 211, 99-104.	0.2	18
113	Human Pancreatic Lipase. Journal of Biological Chemistry, 1995, 270, 3932-3937.	3.4	18
114	Inhibition of Dog and Human Gastric Lipases by Enantiomeric Phosphonate Inhibitors:Â A Structureâ^'Activity Study. Biochemistry, 2003, 42, 11587-11593.	2.5	18
115	A kinetic study of the formation of β-cyclodextrin complexes with monomolecular films of fatty acids and glycerides spread at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2005, 42, 9-20.	5.0	18
116	Competitive inhibition of lipolytic enzymes. V. A monolayer study using enantiomeric acylamino analogues of phospholipids as potent competitive inhibitors of porcine pancreatic phospholipase A2. Lipids and Lipid Metabolism, 1992, 1123, 92-100.	2.6	16
117	Tryptic cleavage of gastric lipases: Location of the single disulfide bridge. Lipids and Lipid Metabolism, 1994, 1213, 319-324.	2.6	16
118	Rat platelet phospholipase A2. Kinetic characterization using the monomolecular film technique. FEBS Journal, 1992, 204, 793-797.	0.2	15
119	Clyceride synthesis catalyzed by cutinase using the monomolecular film technique. Biochemistry, 1995, 34, 1615-1621.	2.5	15
120	Application to the Synthesis of Enantiopure Phosphonates Analogous to Triglycerides: A New Class of Inhibitors of Lipases. European Journal of Organic Chemistry, 1999, 1999, 1671-1678.	2.4	15
121	Triacylglycerols Based on 2-(N-tert-Butoxycarbonylamino)oleic Acid Are Potent Inhibitors of Pancreatic Lipase. Journal of Medicinal Chemistry, 2004, 47, 288-291.	6.4	15
122	Development of a high-throughput assay for measuring lipase activity using natural triacylglycerols coated on microtiter plates. Analyst, The, 2013, 138, 5230.	3.5	15
123	[16] Large-scale purification and kinetic properties of recombinant hormone-sensitive lipase from baculovirus-insect cell systems. Methods in Enzymology, 1997, 284, 272-284.	1.0	13
124	Staphylococcal lipases stereoselectively hydrolyse the sn-2 position of monomolecular films of diglyceride analogs. Application to sn-2 hydrolysis of triolein. Journal of Colloid and Interface Science, 2010, 347, 301-308.	9.4	13
125	Interaction of a poly(dimethylsiloxane) with triglycerides in monomolecular films and application to lipase kinetics. Chemistry and Physics of Lipids, 1996, 81, 1-9.	3.2	12
126	An inactive pancreatic—related protein is activated into a triglyceride-lipase by mutagenesis based on the 3-D structure. Chemistry and Physics of Lipids, 1998, 93, 103-114.	3.2	12

#	Article	IF	CITATIONS
127	Biochemical characterisation and kinetic properties of a purified lipase from Aspergillus niger in bulk phase and monomolecular films. Enzyme and Microbial Technology, 2002, 30, 902-909.	3.2	12
128	The condensing effects of egg lecithin and cholesterol on triolein monolayers are inhibited by substitution of one saturated acyl chain in the triacylglycerol. Lipids and Lipid Metabolism, 1994, 1211, 229-233.	2.6	11
129	Regulation of lumen fat digestion: enzymic aspects. Proceedings of the Nutrition Society, 1996, 55, 5-18.	1.0	10
130	Novel Trifluoromethyl Ketones as Potent Gastric Lipase Inhibitors. ChemBioChem, 2003, 4, 90-95.	2.6	10
131	The Kinetics, Specificities and Structural Features of Lipases. , 1996, , 265-304.		10
132	A new method for determining phospholipase D activity using the monomolecular film technique. Chemistry and Physics of Lipids, 1996, 79, 107-112.	3.2	9
133	Expression in Pichia pastoris X33 of His-tagged lipase from a novel strain of Rhizopus oryzae and its mutant Asn 134 His: purification and characterization. World Journal of Microbiology and Biotechnology, 2009, 25, 1375-1384.	3.6	9
134	Synthesis and properties of novel lipopeptides and lipid mimetics. , 1997, 3, 291-298.		8
135	An enzymatically active truncated form (â^'55 N-terminal residues) of rabbit gastric lipase. Correlation between the enzymatic activity and disulfide bond oxydo-reduction state. BBA - Proteins and Proteomics, 1998, 1386, 39-49.	2.1	8
136	Critical evaluation of a specific ELISA and two enzymatic assays of pancreatic lipases in human sera. Pancreatology, 2004, 4, 495-504.	1.1	8
137	A comparative kinetic study on human pancreatic and Thermomyces lanuginosa lipases: Inhibitory effects of tetrahydrolipstatin in the presence of lipid substrates. Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 19-26.	1.8	8
138	Purification, Biochemical and Kinetic Properties of Recombinant Staphylococcus aureus Lipase. Methods in Molecular Biology, 2012, 861, 267-282.	0.9	8
139	[7] Immunological techniques for the characterization of digestive lipases. Methods in Enzymology, 1997, 286, 126-149.	1.0	7
140	Structure-function relationships of pancreatic lipases. Lipid - Fett, 1998, 100, 96-102.	0.4	7
141	Zymogram of Pancreatic Lipases. Analytical Biochemistry, 2000, 281, 234-236.	2.4	7
142	Synthesis of Lipophilic Aldehydes and Study of Their Inhibition Effect on Human Digestive Lipases. Organic Letters, 2002, 4, 2625-2628.	4.6	7
143	Sterically Hindered Triacylglycerol Analogues as Potent Inhibitors of Human Digestive Lipases. Chemistry - A European Journal, 2004, 10, 1133-1140.	3.3	7

144 The Kinetics, Specificities and Structural Features of Lipases. , 1996, , 143-182.

7

#	Article	IF	CITATIONS
145	Gly311 residue triggers the enantioselectivity of Staphylococcus xylosus lipase: A monolayer study. Journal of Colloid and Interface Science, 2007, 310, 196-204.	9.4	6
146	Digestive Lipases Inhibition: an In vitro Study. , 2005, , 155-193.		5
147	Continuous Measurement of the Lipoxygenase-Catalyzed Oxidation of Unsaturated Lipids Using the Monomolecular Film Technique. Pharmaceutical Research, 2006, 23, 2469-2474.	3.5	5
148	Kinetics of the spreading of Intralipidâ,,¢ emulsions at the air-water interface. Colloids and Surfaces B: Biointerfaces, 1995, 4, 213-220.	5.0	4
149	One-Step Purification and Biochemical Characterization of Recombinant Pancreatic Lipases Expressed in Insect Celis. , 1999, 109, 187-202.		3
150	Scorpion digestive lipase: Kinetic study using monomolecular film technique. Colloids and Surfaces B: Biointerfaces, 2006, 49, 8-14.	5.0	1