
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10758094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. New England Journal of Medicine, 2013, 368, 2059-2074.	27.0	4,139
2	Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497, 67-73.	27.8	4,075
3	The Immune Landscape of Cancer. Immunity, 2018, 48, 812-830.e14.	14.3	3,706
4	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	27.0	2,582
5	Genomic Classification of Cutaneous Melanoma. Cell, 2015, 161, 1681-1696.	28.9	2,562
6	The Molecular Taxonomy of Primary Prostate Cancer. Cell, 2015, 163, 1011-1025.	28.9	2,435
7	Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell, 2014, 159, 676-690.	28.9	2,318
8	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, 2018, 173, 400-416.e11.	28.9	2,277
9	Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature, 2019, 569, 503-508.	27.8	2,149
10	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	28.9	2,111
11	Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell, 2017, 171, 540-556.e25.	28.9	1,742
12	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell, 2018, 173, 291-304.e6.	28.9	1,718
13	Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell, 2016, 164, 550-563.	28.9	1,695
14	Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 2018, 173, 371-385.e18.	28.9	1,670
15	Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 2015, 163, 506-519.	28.9	1,485
16	Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2017, 32, 185-203.e13.	16.8	1,428
17	Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell, 2018, 173, 338-354.e15.	28.9	1,417
18	Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin. Cell, 2014, 158, 929-944.	28.9	1,242

#	Article	IF	CITATIONS
19	Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. New England Journal of Medicine, 2016, 374, 135-145.	27.0	1,040
20	Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nature Genetics, 2016, 48, 607-616.	21.4	933
21	Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Reports, 2018, 23, 239-254.e6.	6.4	801
22	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-689.e3.	16.8	750
23	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell, 2017, 171, 950-965.e28.	28.9	738
24	Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Reports, 2018, 23, 181-193.e7.	6.4	683
25	The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell, 2014, 26, 319-330.	16.8	665
26	Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell, 2017, 32, 204-220.e15.	16.8	642
27	Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell, 2018, 34, 211-224.e6.	16.8	623
28	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Systems, 2018, 6, 271-281.e7.	6.2	605
29	Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell, 2017, 31, 181-193.	16.8	532
30	The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Reports, 2018, 23, 313-326.e5.	6.4	523
31	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-736.	16.8	482
32	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell, 2018, 33, 690-705.e9.	16.8	478
33	A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nature Communications, 2014, 5, 3887.	12.8	456
34	TCPA: a resource for cancer functional proteomics data. Nature Methods, 2013, 10, 1046-1047.	19.0	446
35	A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations. Cancer Cell, 2017, 31, 820-832.e3.	16.8	433
36	Integrative Molecular Characterization of Malignant Pleural Mesothelioma. Cancer Discovery, 2018, 8, 1548-1565.	9.4	422

#	Article	IF	CITATIONS
37	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Reports, 2017, 18, 2780-2794.	6.4	416
38	Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Reports, 2018, 23, 227-238.e3.	6.4	407
39	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell, 2018, 33, 721-735.e8.	16.8	396
40	Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Reports, 2019, 28, 1370-1384.e5.	6.4	382
41	Tumour angiogenesis regulation by the miR-200 family. Nature Communications, 2013, 4, 2427.	12.8	363
42	TCGASpliceSeq a compendium of alternative mRNA splicing in cancer. Nucleic Acids Research, 2016, 44, D1018-D1022.	14.5	358
43	Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Reports, 2018, 23, 282-296.e4.	6.4	333
44	Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Reports, 2018, 23, 3392-3406.	6.4	324
45	Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell, 2017, 31, 411-423.	16.8	309
46	Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma. Cell Reports, 2016, 14, 2476-2489.	6.4	298
47	Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Systems, 2018, 6, 282-300.e2.	6.2	284
48	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell, 2018, 173, 305-320.e10.	28.9	272
49	The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell, 2018, 33, 244-258.e10.	16.8	270
50	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Reports, 2018, 23, 194-212.e6.	6.4	245
51	Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays. Cancer Cell, 2017, 31, 225-239.	16.8	190
52	Realizing the Promise of Reverse Phase Protein Arrays for Clinical, Translational, and Basic Research: A Workshop Report. Molecular and Cellular Proteomics, 2014, 13, 1625-1643.	3.8	152
53	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily. Cell Systems, 2018, 7, 422-437.e7.	6.2	134
54	Invasive Bladder Cancer: Genomic Insights and Therapeutic Promise. Clinical Cancer Research, 2015, 21, 4514-4524.	7.0	110

#	Article	IF	CITATIONS
55	Analysis of Genomes and Transcriptomes of Hepatocellular Carcinomas Identifies Mutations and Gene Expression Changes in the Transforming Growth Factor-β Pathway. Gastroenterology, 2018, 154, 195-210.	1.3	105
56	Before and After: Comparison of Legacy and Harmonized TCGA Genomic Data Commons' Data. Cell Systems, 2019, 9, 24-34.e10.	6.2	103
57	Explore, Visualize, and Analyze Functional Cancer Proteomic Data Using the Cancer Proteome Atlas. Cancer Research, 2017, 77, e51-e54.	0.9	101
58	Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. Cell Reports, 2018, 23, 213-226.e3.	6.4	83
59	TCPA v3.0: An Integrative Platform to Explore the Pan-Cancer Analysis of Functional Proteomic Data. Molecular and Cellular Proteomics, 2019, 18, S15-S25.	3.8	61
60	Using reverse-phase protein arrays as pharmacodynamic assays for functional proteomics, biomarker discovery, and drug development in cancer. Seminars in Oncology, 2016, 43, 476-483.	2.2	55
61	Development of a robust classifier for quality control of reverse-phase protein arrays. Bioinformatics, 2015, 31, 912-918.	4.1	43
62	Focal adhesion kinase. Cancer Biology and Therapy, 2014, 15, 919-929.	3.4	42
63	Large-Scale Characterization of Drug Responses of Clinically Relevant Proteins in Cancer Cell Lines. Cancer Cell, 2020, 38, 829-843.e4.	16.8	40
64	A Galaxy Implementation of Next-Generation Clustered Heatmaps for Interactive Exploration of Molecular Profiling Data. Cancer Research, 2017, 77, e23-e26.	0.9	32
65	EMLTrust: An enhanced Machine Learning based Reputation System for MANETs. Ad Hoc Networks, 2012, 10, 435-457.	5.5	31
66	Interactive Clustered Heat Map Builder: An easy web-based tool for creating sophisticated clustered heat maps. F1000Research, 2019, 8, 1750.	1.6	31
67	Interactive Clustered Heat Map Builder: An easy web-based tool for creating sophisticated clustered heat maps. F1000Research, 2019, 8, 1750.	1.6	31
68	Mobile Ad-Hoc Networks Security. Lecture Notes in Electrical Engineering, 2012, , 659-666.	0.4	28
69	HEAP: A packet authentication scheme for mobile ad hoc networks. Ad Hoc Networks, 2008, 6, 1134-1150.	5.5	24
70	A Comprehensive Comparison of Normalization Methods for Loading Control and Variance Stabilization of Reverse-Phase Protein Array Data. Cancer Informatics, 2014, 13, CIN.S13329.	1.9	19
71	Mutational Profiles Reveal an Aberrant TGF-β-CEA Regulated Pathway in Colon Adenomas. PLoS ONE, 2016, 11, e0153933.	2.5	17
72	Whole-genome characterization of lung adenocarcinomas lacking alterations in the RTK/RAS/RAF pathway. Cell Reports, 2021, 34, 108707.	6.4	16

#	Article	IF	CITATIONS
73	Bayesian Hierarchical Varying-Sparsity Regression Models with Application to Cancer Proteogenomics. Journal of the American Statistical Association, 2019, 114, 48-60.	3.1	15
74	Personalized Integrated Network Modeling of the Cancer Proteome Atlas. Scientific Reports, 2018, 8, 14924.	3.3	14
75	Molecular heterogeneity at the network level: high-dimensional testing, clustering and a TCGA case study. Bioinformatics, 2017, 33, 2890-2896.	4.1	13
76	Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome. JCO Clinical Cancer Informatics, 2020, 4, 399-411.	2.1	13
77	Consensus subtypes of hepatocellular carcinoma associated with clinical outcomes and genomic phenotypes. Hepatology, 2022, 76, 1634-1648.	7.3	10
78	Analytical Platforms 3: Processing Samples via the RPPA Pipeline to Generate Large-Scale Data for Clinical Studies. Advances in Experimental Medicine and Biology, 2019, 1188, 113-147.	1.6	9
79	Identification and validation of a prognostic proteomic signature for cervical cancer. Gynecologic Oncology, 2019, 155, 324-330.	1.4	8
80	The Cancer Genome Atlas Project on Muscle-invasive Bladder Cancer. European Urology Focus, 2015, 1, 94-95.	3.1	7
81	Enhancing role-based trust management with a reputation system for MANETs. Eurasip Journal on Wireless Communications and Networking, 2011, 2011, .	2.4	6
82	Credentialing Individual Samples for Proteogenomic Analysis. Molecular and Cellular Proteomics, 2018, 17, 1515-1530.	3.8	5
83	SAMMI: a semi-automated tool for the visualization of metabolic networks. Bioinformatics, 2020, 36, 2616-2617.	4.1	3
84	NExUS: Bayesian simultaneous network estimation across unequal sample sizes. Bioinformatics, 2020, 36, 798-804.	4.1	2
85	Generation of Raw RPPA Data and Their Conversion to Analysis-Ready Data. Advances in Experimental Medicine and Biology, 2019, 1188, 165-180.	1.6	2
86	Genomic Assessment of Muscle-Invasive Bladder Cancer: Insights from the Cancer Genome Atlas (TCGA) Project. Molecular Pathology Library, 2018, , 43-64.	0.1	0