Gershon Kurizki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10758069/publications.pdf

Version: 2024-02-01

109321 106344 4,500 112 35 65 citations h-index g-index papers 114 114 114 3032 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Does Decoherence Select the Pointer Basis of a Quantum Meter?. Entropy, 2022, 24, 106.	2.2	1
2	Quantum Zeno and Anti-Zeno Probes of Noise Correlations in Photon Polarization. Physical Review Letters, 2022, 129, .	7.8	12
3	Work Generation from Thermal Noise by Quantum Phase-Sensitive Observation. Physical Review Letters, 2021, 127, 040602.	7.8	7
4	Precision Limits of Tissue Microstructure Characterization by Magnetic Resonance Imaging. Physical Review Applied, 2020, 14 , .	3.8	6
5	Anti-Zeno quantum advantage in fast-driven heat machines. Communications Physics, 2020, 3, .	5.3	27
6	Spin-bath polarization via disentanglement. New Journal of Physics, 2020, 22, 083035.	2.9	8
7	Minimal quantum heat manager boosted by bath spectral filtering. Physical Review Research, 2020, 2, .	3.6	24
8	Solitons supported by intensity-dependent dispersion. Optics Letters, 2020, 45, 1471.	3.3	5
9	Temperature Control in Dissipative Cavities by Entangled Dimers. Journal of Physical Chemistry C, 2019, 123, 4035-4043.	3.1	35
10	Collectively enhanced thermalization via multiqubit collisions. Physical Review E, 2019, 99, 042145.	2.1	37
11	Quantum optical two-atom thermal diode. Physical Review E, 2019, 99, 042121.	2.1	36
12	Are quantum thermodynamic machines better than their classical counterparts?. European Physical Journal: Special Topics, 2019, 227, 2043-2051.	2.6	24
13	Enhanced precision bound of low-temperature quantum thermometry via dynamical control. Communications Physics, 2019, 2, .	5.3	30
14	Quantum engine efficiency bound beyond the second law of thermodynamics. Nature Communications, 2018, 9, 165.	12.8	174
15	Cooperative many-body enhancement of quantum thermal machine power. New Journal of Physics, 2018, 20, 113038.	2.9	57
16	Two-level masers as heat-to-work converters. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9941-9944.	7.1	38
17	Quantum Lamarckism: observation, control and decoherence. Physica Scripta, 2018, 93, 124003.	2.5	1
18	Quantum Sensing of Noisy and Complex Systems under Dynamical Control. Technologies, 2017, 5, 1.	5.1	25

#	Article	IF	CITATIONS
19	Multiatom Quantum Coherences in Micromasers as Fuel for Thermal and Nonthermal Machines. Entropy, 2016, 18, 244.	2.2	76
20	On the operation of machines powered by quantum non-thermal baths. New Journal of Physics, 2016, 18, 083012.	2.9	113
21	Highly nonlocal optical nonlinearities in atoms trapped near a waveguide. Optica, 2016, 3, 725.	9.3	51
22	Criticality of environmental information obtainable by dynamically controlled quantum probes. Physical Review A, 2016, 94, .	2.5	12
23	Maximizing Information on the Environment by Dynamically Controlled Qubit Probes. Physical Review Applied, 2016, 5, .	3.8	50
24	Thermodynamics of Quantum Systems Under Dynamical Control. Advances in Atomic, Molecular and Optical Physics, 2015, , 329-407.	2.3	136
25	Performance limits of multilevel and multipartite quantum heat machines. Physical Review E, 2015, 92, 042123.	2.1	45
26	Power enhancement of heat engines via correlated thermalization in a three-level "working fluid― Scientific Reports, 2015, 5, 14413.	3.3	43
27	Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3866-3873.	7.1	568
28	Thermal baths as quantum resources: more friends than foes?. Physica Scripta, 2015, 90, 128002.	2.5	13
29	Threshold characteristics of free electron lasers without inversion. Laser Physics Letters, 2014, 11, 125001.	1.4	7
30	Optimized dynamical control of state transfer through noisy spin chains. New Journal of Physics, 2014, 16, 065021.	2.9	40
31	Non-additivity in laser-illuminated many-atom systems. Optics Letters, 2014, 39, 3674.	3.3	8
32	Nonlinear theory of laser-induced dipolar interactions in arbitrary geometry. Physical Review A, 2014, 89, .	2.5	13
33	Giant vacuum forces via transmission lines. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10485-10490.	7.1	31
34	Quantum particle localization by frequent coherent monitoring. Physical Review A, 2013, 87, .	2.5	4
35	Nonradiative interaction and entanglement between distant atoms. Physical Review A, 2013, 87, .	2.5	104
36	Engineering a thermal squeezed reservoir by energy-level modulation. Physical Review A, 2013, 87, .	2.5	13

#	Article	IF	CITATIONS
37	Universal Dynamical Control of Open Quantum Systems. , 2013, 2013, 1-51.		2
38	Dispersion forces inside metallic waveguides. Physical Review A, 2013, 87, .	2.5	19
39	Controlling Spin-Spin Network Dynamics by Repeated Projective Measurements. Physical Review Letters, 2012, 108, 140403.	7.8	15
40	Shift-driven modulations of spin-echo signals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5958-5961.	7.1	18
41	Optimizing inhomogeneous spin ensembles for quantum memory. Physical Review A, 2012, 86, .	2.5	18
42	Conditions of Perfect Imaging in Negative Refraction Materials with Gain. Advances in OptoElectronics, 2012, 2012, 1-5.	0.6	1
43	Task-optimized control of open quantum systems. Physical Review A, 2012, 85, .	2.5	21
44	Scalability of decoherence control in entangled systems. Physical Review A, 2011, 83, .	2.5	14
45	Generation of Macroscopic Superpositions of Quantum States by Linear Coupling to a Bath. Physical Review Letters, 2011, 106, 010404.	7.8	20
46	Einstein-Podolsky-Rosen Correlations of Ultracold Atomic Gases. Physical Review Letters, 2011, 106, 120404.	7.8	35
47	Optimizing lightwave transmission through a nano-tip. AIP Advances, 2011, 1, 022130.	1.3	5
48	Controlling quantum information processing in hybrid systems on chips. Quantum Information Processing, 2011, 10, 1037-1060.	2.2	23
49	Creating Nonclassical States of Bose-Einstein Condensates by Dephasing Collisions. Physical Review Letters, 2011, 107, 010404.	7.8	35
50	From Zeno to anti-Zeno regime: Decoherence-control dependence on the quantum statistics of the bath. Physical Review A, $2011,83$, .	2.5	25
51	Strongly interacting photons in hollow-core waveguides. Physical Review A, 2011, 83, .	2.5	82
52	Direct measurement of the system–environment coupling as a tool for understanding decoherence and dynamical decoupling. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 154006.	1.5	75
53	Non-Markovian control of qubit thermodynamics by frequent quantum measurements. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 477-483.	2.7	3
54	Two-dimensional solitons in periodically modulated double-well potentials. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 205304.	1.5	7

#	Article	IF	CITATIONS
55	Dynamical control of nonlinear symmetry breaking under decoherence. Physical Review A, 2010, 82, .	2.5	4
56	Zeno and Anti-Zeno Polarization Control of Spin Ensembles by Induced Dephasing. Physical Review Letters, 2010, 105, 160401.	7.8	63
57	Bath-Optimized Minimal-Energy Protection of Quantum Operations from Decoherence. Physical Review Letters, 2010, 104, 040401.	7.8	90
58	THEORY OF RAMAN AMPLIFICATION IN MICROSPHERES. Advanced Series in Applied Physics, 2010, , 137-150.	0.0	1
59	Backward self-induced transparency in metamaterials. Physical Review A, 2009, 80, .	2.5	6
60	ZENO HEATING AND ANTI-ZENO COOLING BY FREQUENT QUANTUM MEASUREMENTS. International Journal of Quantum Information, 2009, 07, 49-62.	1.1	1
61	Cooling down quantum bits on ultrashort time scales. New Journal of Physics, 2009, 11, 123025.	2.9	38
62	Unitary and non-unitary manipulations of qubit-bath entanglement: non-Markov qubit cooling. Quantum Information Processing, 2009, 8, 607-617.	2.2	1
63	Reversible state transfer between superconducting qubits and atomic ensembles. Physical Review A, 2009, 79, .	2.5	128
64	Quantum-Zeno Control of Collisional Entanglement in a Bose-Josephson Junction., 2009,,.		0
65	Dynamic control and probing of many-body decoherence in double-well Bose-Einstein condensates. Physical Review A, 2009, 80, .	2.5	23
66	Master Equation and Control of an Open Quantum System with Leakage. Physical Review Letters, 2009, 102, 080405.	7.8	49
67	Thermodynamic control by frequent quantum measurements. Nature, 2008, 452, 724-727.	27.8	169
68	Dynamical protection of quantum computation from decoherence in laser-driven cold-ion and cold-atom systems. New Journal of Physics, 2008, 10, 045005.	2.9	10
69	Fabrication of photonic crystals with functional defects by one-step holographic lithography. Optics Express, 2008, 16, 12899.	3.4	53
70	Why and how should we control decoherence?â€. Journal of Modern Optics, 2008, 55, 3389-3402.	1.3	0
71	Optimal Dynamical Decoherence Control of a Qubit. Physical Review Letters, 2008, 101, 010403.	7.8	155
72	Generation of a self-pulsed picosecond solitary wave train from a periodically amplifying Bragg structure. Physical Review A, 2008, 78, .	2.5	3

#	Article	IF	CITATIONS
73	Universal dephasing control during quantum computation. Physical Review A, 2007, 76, .	2.5	25
74	Control of multiatom entanglement in a cavity. Physical Review A, 2007, 75, .	2.5	28
75	Open-loop stochastic control of quantum coherence. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, S61-S73.	1.5	11
76	Nonlinear dynamics of negatively refracted light in a resonantly absorbing Bragg reflector. Optics Letters, 2007, 32, 1117.	3.3	3
77	Universal dynamical decoherence control of noisy single- and multi-qubit systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, S75-S93.	1.5	97
78	Spatial Thirring-type solitons via electromagnetically induced transparency. , 2006, , .		0
79	TRANSLATIONAL ENTANGLEMENT BY COLLISIONS AND HALF-COLLISIONS. International Journal of Modern Physics B, 2006, 20, 1648-1660.	2.0	O
80	QUANTUM AND NONLINEAR OPTICS WITH FEW PHOTONS :NEW PERSPECTIVES IN SOLIDS AND GASES. , 2006, , .		0
81	Long-range interactions and entanglement of slow single-photon pulses. Physical Review A, 2005, 72, .	2.5	193
82	Deterministic quantum logic with photons via optically induced photonic band gaps. Physical Review A, 2005, 71, .	2.5	69
83	Translational Entanglement via Collisions: How Much Quantum Information is Obtainable?. Physical Review Letters, 2005, 94, 160503.	7.8	27
84	Spatial Thirring-type solitons via electromagnetically induced transparency. Optics Letters, 2005, 30, 3374.	3.3	49
85	POSITION AND MOMENTUM ENTANGLEMENT OF DIPOLE–DIPOLE INTERACTING ATOMS IN OPTICAL LATTICES: THE EINSTEIN–PODOLSKY–ROSEN PARADOX ON A LATTICE. International Journal of Quantum Information, 2004, 02, 305-321.	1.1	1
86	Proposal for Translational Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices. Physical Review Letters, 2003, 90, 250404.	7.8	19
87	Numerical Experiments on Free-Electron Lasers Without Inversion. Physical Review Letters, 2003, 90, 214802.	7.8	16
88	Squeezing in a dipolar Boseâ€"Einstein condensed gas. Journal of Modern Optics, 2003, 50, 2655-2666.	1.3	2
89	Scalable Solid-State Quantum Processor Using Subradiant Two-Atom States. Physical Review Letters, 2002, 89, 207902.	7.8	50
90	Self-induced transparency and giant nonlinearity in doped photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2066.	2.1	8

#	Article	IF	Citations
91	Optical solitons in periodic media with resonant and off-resonant nonlinearities. Progress in Optics, 2001, 42, 93-146.	0.6	41
92	Broadband optical gain via interference in the free electron laser: Principles and proposed realizations. Physical Review E, 2001, 64, 026501.	2.1	1
93	Free-Electron Laser without Inversion: Gain Optimization and Implementation Scheme. Physical Review Letters, 2000, 85, 4510-4513.	7.8	14
94	Dark and bright solitons in resonantly absorbing gratings. Physical Review E, 1999, 60, 6137-6149.	2.1	42
95	Trapping-state restoration in the randomly driven Jaynes-Cummings model by conditional measurements. Physical Review A, 1999, 59, 714-717.	2.5	4
96	Stabilization of Deterministically Chaotic Systems by Interference and Quantum Measurements: The Ikeda Map Case. Physical Review Letters, 1998, 80, 5730-5733.	7.8	2
97	Standing and Moving Gap Solitons in Resonantly Absorbing Gratings. Physical Review Letters, 1998, 81, 3647-3650.	7.8	76
98	Lasing without inversion in Cherenkov free-electron lasers. Optics Communications, 1996, 123, 363-371.	2.1	27
99	Theory of one-dimensional quantum gap solitons. Physical Review A, 1996, 54, 3576-3591.	2.5	17
100	Tachyonlike Excitations in Inverted Two-Level Media. Physical Review Letters, 1996, 77, 1254-1257.	7.8	72
101	Free-electron laser without inversion via transverse momentum discrimination. Physical Review E, 1996, 54, 6780-6787.	2.1	19
102	Self-Induced Transparency in Bragg Reflectors: Gap Solitons near Absorption Resonances. Physical Review Letters, 1995, 74, 5020-5023.	7.8	104
103	Optical "Multiexcitons― Quantum Gap Solitons in Nonlinear Bragg Reflectors. Physical Review Letters, 1995, 75, 3430-3433.	7.8	25
104	Universal Classical Mechanism of Free-Electron Lasing without Inversion. Physical Review Letters, 1995, 75, 4602-4605.	7.8	34
105	Quantum features of resonance fluorescence as probes of two-atom dynamical correlations. Physical Review A, 1991, 43, 2599-2602.	2.5	10
106	Two-atom resonant radiative coupling in photonic band structures. Physical Review A, 1990, 42, 2915-2924.	2.5	92
107	Phase-coherent control of photocurrent directionality in semiconductors. Physical Review B, 1989, 39, 3435-3437.	3.2	152
108	Cooperative fluorescence in nonadiabatic dissociation of alkali diatoms. Physical Review A, 1988, 38, 6433-6436.	2.5	6

#	Article	IF	CITATIONS
109	Theory of cooperative fluorescence from products of reactions or collisions: Identical neutral atomic fragments. Physical Review A, 1987, 36, 90-104.	2.5	29
110	Quantum interference and radiative coupling in two-atom single-photon emission. Physical Review A, 1985, 32, 2560-2563.	2.5	22
111	From Coherent to Incoherent Dynamical Control of Open Quantum Systems. Advances in Chemical Physics, 0, , 137-218.	0.3	2
112	Quantized refrigerator for an atomic cloud. Quantum - the Open Journal for Quantum Science, 0, 3, 155.	0.0	19