Avneesh K Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10758016/publications.pdf

Version: 2024-02-01

26 papers 2,646 citations

394421 19 h-index 26 g-index

27 all docs

 $\begin{array}{c} 27 \\ \text{docs citations} \end{array}$

27 times ranked

2115 citing authors

#	Article	IF	CITATIONS
1	Glycolipid antigen induces long-term natural killer T cell anergy in mice. Journal of Clinical Investigation, 2005, 115, 2572-2583.	8.2	386
2	Natural Killer T Cell Activation Protects Mice Against Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2001, 194, 1801-1811.	8.5	375
3	Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nature Communications, 2016, 7, 11138.	12.8	351
4	The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10913-10918.	7.1	306
5	Genetically Modified Porcine-to-Human Cardiac Xenotransplantation. New England Journal of Medicine, 2022, 387, 35-44.	27.0	270
6	Quantitative and Qualitative Differences in the In Vivo Response of NKT Cells to Distinct \hat{l}_{\pm} - and \hat{l}_{\pm} -Anomeric Glycolipids. Journal of Immunology, 2004, 173, 3693-3706.	0.8	136
7	Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1106-1114.	0.8	111
8	Immunoregulatory Role of CD1d in the Hydrocarbon Oil-Induced Model of Lupus Nephritis. Journal of Immunology, 2003, 171, 2142-2153.	0.8	93
9	The natural killer T?cell ligand ?-galactosylceramide prevents or promotes pristane-induced lupus in mice. European Journal of Immunology, 2005, 35, 1143-1154.	2.9	81
10	Early graft failure of GalTKO pig organs in baboons is reduced by expression of a human complement pathwayâ€regulatory protein. Xenotransplantation, 2015, 22, 310-316.	2.8	79
11	Role of antiâ€CD40 antibodyâ€mediated costimulation blockade on nonâ€Gal antibody production and heterotopic cardiac xenograft survival in a GTKO.hCD46Tg pigâ€toâ€baboon model. Xenotransplantation, 2014, 21, 35-45.	2.8	77
12	Immunotherapy with ligands of natural killer T cells. Trends in Molecular Medicine, 2002, 8, 225-231.	6.7	69
13	Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months. Xenotransplantation, 2022, 29, e12744.	2.8	64
14	Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs. Xenotransplantation, 2019, 26, e12465.	2.8	43
15	Characterization and expansion of baboon CD4 ⁺ CD25 ⁺ Treg cells for potential use in a nonâ€human primate xenotransplantation model. Xenotransplantation, 2007, 14, 298-308.	2.8	39
16	Regulatory T cells enhance mesenchymal stem cell survival andÂproliferation following autologous cotransplantation in ischemic myocardium. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1131-1137.	0.8	28
17	Exâ€vivo expanded baboon CD4 ⁺ CD25 ^{Hi} Treg cells suppress baboon antiâ€pig T and B cell immune response. Xenotransplantation, 2012, 19, 102-111.	2.8	21
18	Encouraging experience using multiâ€transgenic xenografts in a pigâ€toâ€baboon cardiac xenotransplantation model. Xenotransplantation, 2017, 24, e12330.	2.8	21

#	Article	IF	CITATION
19	Blood Cardioplegia Induction, Perfusion Storage and Graft Dysfunction in Cardiac Xenotransplantation. Frontiers in Immunology, 2021, 12, 667093.	4.8	20
20	<scp>CD</scp> 4+ <scp>CD</scp> 25 ^{Hi} FoxP3+ regulatory T cells in longâ€term cardiac xenotransplantation. Xenotransplantation, 2018, 25, e12379.	2.8	17
21	Early Experience With Preclinical Perioperative Cardiac Xenograft Dysfunction in a Single Program. Annals of Thoracic Surgery, 2020, 109, 1357-1361.	1.3	16
22	Heterotopic Porcine Cardiac Xenotransplantation in the Intra-Abdominal Position in a Non-Human Primate Model. Scientific Reports, 2020, 10, 10709.	3.3	15
23	Cardiac Xenotransplantation: Progress in Preclinical Models and Prospects for Clinical Translation. Transplant International, 2022, 35, 10171.	1.6	10
24	Xenotransplantation: A Step Closer to Clinical Reality?. Transplantation, 2019, 103, 453-454.	1.0	7
25	Consideration of appropriate clinical applications for cardiac xenotransplantation. Clinical Transplantation, 2018, 32, e13330.	1.6	4
26	Preclinical rationale and current pathways to support the first human clinical trials in cardiac xenotransplantation. Human Immunology, 2023, 84, 34-42.	2.4	4