Sandip Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1075420/publications.pdf Version: 2024-02-01

C ^ 1	DATE	
	PATE	

#	Article	IF	CITATIONS
1	NAADP-binding proteins find their identity. Trends in Biochemical Sciences, 2022, 47, 235-249.	7.5	15
2	Plant and animal two-pore channels. , 2022, , 247-267.		0
3	Activation of endo-lysosomal two-pore channels by NAADP and PI(3,5)P2. Five things to know Cell Calcium, 2022, 103, 102543.	2.4	10
4	The lysosomotrope GPN mobilises Ca2+ from acidic organelles. Journal of Cell Science, 2021, 134, .	2.0	14
5	Teaming with NAADP. Science Signaling, 2021, 14, .	3.6	4
6	Essential requirement for JPT2 in NAADP-evoked Ca ²⁺ signaling. Science Signaling, 2021, 14,	3.6	69
7	Deviant lysosomal K+ fluxes and Parkinson's. A calci-centric point of view. Cell Calcium, 2021, 97, 102418.	2.4	0
8	NAADP receptors: A one-two Cell Calcium, 2021, 100, 102478.	2.4	3
9	A plastid two-pore channel essential for inter-organelle communication and growth of Toxoplasma gondii. Nature Communications, 2021, 12, 5802.	12.8	19
10	Does lysosomal rupture evoke Ca2+ release? A question of pores and stores. Cell Calcium, 2020, 86, 102139.	2.4	18
11	Two-pore channels as master regulators of membrane trafficking and endocytic well-being. Current Opinion in Physiology, 2020, 17, 163-168.	1.8	19
12	Preventing a shock to the system. Two-pore channel 1 negatively regulates anaphylaxis. Cell Calcium, 2020, 92, 102289.	2.4	2
13	Discovery of lipophilic twoâ€pore channel agonists. FEBS Journal, 2020, 287, 5284-5293.	4.7	13
14	TRP Channels as Interior Designers: Remodeling the Endolysosomal Compartment in Natural Killer Cells. Frontiers in Immunology, 2020, 11, 753.	4.8	13
15	Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function. ELife, 2020, 9, .	6.0	108
16	Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson's disease. Nature Communications, 2019, 10, 5094.	12.8	65
17	Remodeling of secretory lysosomes during education tunes functional potential in NK cells. Nature Communications, 2019, 10, 514.	12.8	103
18	Getting close. Lysosome-ER contact sites tailor Ca2+ signals. Cell Calcium, 2019, 80, 194-196.	2.4	9

#	Article	IF	CITATIONS
19	Probing Ca2+ release mechanisms using sea urchin egg homogenates. Methods in Cell Biology, 2019, 151, 445-458.	1.1	3
20	Mining of Ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1151-1161.	4.1	62
21	The secret life of calcium in cell signaling. Biochemist, 2019, 41, 34-37.	0.5	2
22	Thinking through acidic Ca ²⁺ stores. Science Signaling, 2018, 11, .	3.6	1
23	Calcium Deregulation: Novel Insights to Understand Friedreich's Ataxia Pathophysiology. Frontiers in Cellular Neuroscience, 2018, 12, 264.	3.7	18
24	Two-pore channels open up. Nature, 2018, 556, 38-40.	27.8	9
25	Two-pore channels and disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1678-1686.	4.1	52
26	Ins and outs of Ca ²⁺ transport by acidic organelles and cell migration. Communicative and Integrative Biology, 2018, 11, e1331800.	1.4	2
27	An Endosomal NAADP-Sensitive Two-Pore Ca 2+ Channel Regulates ER-Endosome Membrane Contact Sites to Control Growth Factor Signaling. Cell Reports, 2017, 18, 1636-1645.	6.4	105
28	NAADP-evoked Ca 2+ signals through two-pore channel-1 require arginine residues in the first S4-S5 linker. Cell Calcium, 2017, 68, 1-4.	2.4	20
29	<i>A Special Issue of Messenger</i> 2016. Messenger (Los Angeles, Calif: Print), 2016, 5, 1-2.	0.3	0
30	ADP-Ribosyl Cyclases Regulate Early Development of the Sea Urchin. Messenger (Los Angeles, Calif:) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf
31	Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. Autophagy, 2016, 12, 1487-1506.	9.1	37
32	Isolated pores dissected from human two-pore channel 2 are functional. Scientific Reports, 2016, 6, 38426.	3.3	9
33	Deviant Lysosomal Ca2+ Signalling in Neurodegeneration. An Introduction. Messenger (Los Angeles,) Tj ETQq1 1	0.784314	rgBT /Overle
34	Endo-lysosomal TRP mucolipin-1 triggers global ER Ca2+ release and Ca2+ influx. Journal of Cell Science, 2016, 129, 3859-3867.	2.0	57
35	Two-pore Channels Enter the Atomic Era: Structure of Plant TPC Revealed. Trends in Biochemical Sciences, 2016, 41, 475-477.	7.5	18

Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo. Journal of Cell Biology, 2016, 5.2 91

#	Article	IF	CITATIONS
37	Probing the Complexities of Astrocyte Calcium Signaling. Trends in Cell Biology, 2016, 26, 300-312.	7.9	215
38	Endoplasmic reticulum and lysosomal Ca2+ stores are remodelled in GBA1-linked Parkinson disease patient fibroblasts. Cell Calcium, 2016, 59, 12-20.	2.4	71
39	Signalling at membrane contact sites: two membranes come together to handle second messengers. Current Opinion in Cell Biology, 2016, 39, 77-83.	5.4	40
40	Ca ²⁺ /H ⁺ exchange by acidic organelles regulates cell migration in vivo. Journal of Experimental Medicine, 2016, 213, 2134OIA28.	8.5	0
41	Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by two-pore channel 2 inhibition. Journal of Cell Science, 2015, 128, 232-8.	2.0	148
42	Two-pore channels at the intersection of endolysosomal membrane traffic. Biochemical Society Transactions, 2015, 43, 434-441.	3.4	54
43	Poring Over Two-Pore Channel Pore Mutants. Messenger (Los Angeles, Calif: Print), 2015, 4, 46-52.	0.3	5
44	Calcium signaling at ER membrane contact sites. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2012-2017.	4.1	94
45	NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1386-1391.	7.1	49
46	Evolution of acidic Ca2+ stores and their resident Ca2+-permeable channels. Cell Calcium, 2015, 57, 222-230.	2.4	74
47	Methods for monitoring lysosomal morphology. Methods in Cell Biology, 2015, 126, 1-19.	1.1	17
48	Function and dysfunction of two-pore channels. Science Signaling, 2015, 8, re7.	3.6	135
49	Coupling acidic organelles with the ER through Ca2+ microdomains at membrane contact sites. Cell Calcium, 2015, 58, 387-396.	2.4	64
50	Insights into the early evolution of animal calcium signaling machinery: A unicellular point of view. Cell Calcium, 2015, 57, 166-173.	2.4	54
51	Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore. Cardiovascular Research, 2015, 108, 357-366.	3.8	44
52	TPC1 Knockout Knocks Out TPC1. Molecular and Cellular Biology, 2015, 35, 1882-1883.	2.3	5
53	The Two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13087-13092.	7.1	109
54	Convergent regulation of the lysosomal two-pore channel-2 by Mg2+, NAADP, PI(3,5)P2 and multiple protein kinases. EMBO Journal, 2014, 33, 501-511.	7.8	162

#	Article	IF	CITATIONS
55	A "mix-and-match―approach to designing Ca ²⁺ microdomains at membrane-contact sites. Communicative and Integrative Biology, 2014, 7, e29586.	1.4	5
56	Targeting Mitochondria for Neuroprotection in Parkinson Disease. JAMA Neurology, 2014, 71, 537.	9.0	16
57	Two-pore channels provide insight into the evolution of voltage-gated Ca ²⁺ and Na ⁺ channels. Science Signaling, 2014, 7, ra109.	3.6	98
58	NAADP-sensitive two-pore channels are present and functional in gastric smooth muscle cells. Cell Calcium, 2014, 56, 51-58.	2.4	16
59	A computational model of lysosome-ER Ca2+ microdomains. Journal of Cell Science, 2014, 127, 2934-43.	2.0	56
60	Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals. Journal of Cell Science, 2013, 126, 60-66.	2.0	161
61	The N-terminal region of two-pore channel 1 regulates trafficking and activation by NAADP. Biochemical Journal, 2013, 453, 147-151.	3.7	26
62	Questioning Regulation of Two-Pore Channels by NAADP. Messenger (Los Angeles, Calif: Print), 2013, 2, 113-119.	0.3	28
63	Photoaffinity Labeling of Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Targets in Mammalian Cells*. Journal of Biological Chemistry, 2012, 287, 2296-2307.	3.4	150
64	Membrane Potential Regulates Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Dependence of the pH- and Ca2+-sensitive Organellar Two-pore Channel TPC1. Journal of Biological Chemistry, 2012, 287, 20407-20416.	3.4	71
65	The intracellular Ca ²⁺ channels of membrane traffic. Channels, 2012, 6, 344-351.	2.8	24
66	The Molecular Basis for Ca ² ⁺ Signalling by NAADP: Two-Pore Channels in a Complex?. Messenger (Los Angeles, Calif: Print), 2012, 1, 63-76.	0.3	22
67	The Signaling Protein CD38 Is Essential for Early Embryonic Development. Journal of Biological Chemistry, 2012, 287, 6974-6978.	3.4	4
68	Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Human Molecular Genetics, 2012, 21, 511-525.	2.9	285
69	Triggering of Ca2+ signals by NAADP-gated two-pore channels: a role for membrane contact sites?. Biochemical Society Transactions, 2012, 40, 153-157.	3.4	31
70	Domain assembly of NAADP-gated two-pore channels. Biochemical Journal, 2012, 441, 317-323.	3.7	32
71	A link between LRRK2, autophagy and NAADP-mediated endolysosomal calcium signalling. Biochemical Society Transactions, 2012, 40, 1140-1146.	3.4	26
72	NAADP on Target. Advances in Experimental Medicine and Biology, 2012, 740, 325-347.	1.6	26

#	Article	IF	CITATIONS
73	Acidic Ca2+ stores come to the fore. Cell Calcium, 2011, 50, 109-112.	2.4	61
74	The endo-lysosomal system as an NAADP-sensitive acidic Ca2+ store: Role for the two-pore channels. Cell Calcium, 2011, 50, 157-167.	2.4	60
75	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Regulates Autophagy in Cultured Astrocytes. Journal of Biological Chemistry, 2011, 286, 27875-27881.	3.4	109
76	Transient Receptor Potential Mucolipin 1 (TRPML1) and Two-pore Channels Are Functionally Independent Organellar Ion Channels. Journal of Biological Chemistry, 2011, 286, 22934-22942.	3.4	91
77	Membrane Topology of NAADP-sensitive Two-pore Channels and Their Regulation by N-linked Glycosylation. Journal of Biological Chemistry, 2011, 286, 9141-9149.	3.4	57
78	Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends in Cell Biology, 2010, 20, 277-286.	7.9	233
79	Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals. Cell Calcium, 2010, 47, 480-490.	2.4	86
80	Deviant Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Ca2+ Signaling upon Lysosome Proliferation. Journal of Biological Chemistry, 2010, 285, 13321-13325.	3.4	24
81	An Ancestral Deuterostome Family of Two-pore Channels Mediates Nicotinic Acid Adenine Dinucleotide Phosphate-dependent Calcium Release from Acidic Organelles. Journal of Biological Chemistry, 2010, 285, 2897-2901.	3.4	112
82	An NAADP-gated Two-pore Channel Targeted to the Plasma Membrane Uncouples Triggering from Amplifying Ca2+ Signals. Journal of Biological Chemistry, 2010, 285, 38511-38516.	3.4	153
83	Degeneration of an Intracellular Ion Channel in the Primate Lineage by Relaxation of Selective Constraints. Molecular Biology and Evolution, 2010, 27, 2352-2359.	8.9	56
84	Acidic NAADP-sensitive Calcium Stores in the Endothelium. Journal of Biological Chemistry, 2010, 285, 37133-37137.	3.4	57
85	A Single Residue in a Novel ADP-ribosyl Cyclase Controls Production of the Calcium-mobilizing Messengers Cyclic ADP-ribose and Nicotinic Acid Adenine Dinucleotide Phosphate. Journal of Biological Chemistry, 2010, 285, 19900-19909.	3.4	11
86	Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. Journal of Cell Biology, 2009, 186, 201-209.	5.2	376
87	In with the TRP Channels: Intracellular Functions for TRPM1 and TRPM2. Science Signaling, 2009, 2, pe69.	3.6	26
88	Recruitment of NAADP-sensitive acidic Ca2+ stores by glutamate. Biochemical Journal, 2009, 422, 503-512.	3.7	67
89	NAADP-mediated channel â€~chatter' in neurons of the rat medulla oblongata. Biochemical Journal, 2009, 419, 91-99.	3.7	53
90	Molecular characterization of a novel cell surface ADP-ribosyl cyclase from the sea urchin. Cellular Signalling, 2008, 20, 2347-2355.	3.6	15

#	Article	IF	CITATIONS
91	Carbon nanopipettes characterize calcium release pathways in breast cancer cells. Nanotechnology, 2008, 19, 325102.	2.6	35
92	Molecular and Functional Characterization of Inositol Trisphosphate Receptors during Early Zebrafish Development*. Journal of Biological Chemistry, 2007, 282, 13984-13993.	3.4	26
93	Molecular Characterization of a Novel Intracellular ADP-Ribosyl Cyclase. PLoS ONE, 2007, 2, e797.	2.5	29
94	Time sensing by NAADP receptors. Biochemical Journal, 2006, 397, 313-320.	3.7	12
95	Messenger-specific Role for Nicotinic Acid Adenine Dinucleotide Phosphate in Neuronal Differentiation. Journal of Biological Chemistry, 2006, 281, 15923-15928.	3.4	92
96	NAADP binding to its target protein in sea urchin eggs requires phospholipids. Biochemical Journal, 2005, 386, 497-504.	3.7	9
97	Role of NAADP and cADPR in the Induction and Maintenance of Agonist-Evoked Ca2+ Spiking in Mouse Pancreatic Acinar Cells. Current Biology, 2005, 15, 874-878.	3.9	137
98	Nicotinic Acid Adenine Dinucleotide Phosphate Potentiates Neurite Outgrowth. Journal of Biological Chemistry, 2005, 280, 5646-5650.	3.4	101
99	Methods in Cyclic ADP-Ribose and NAADP Research. , 2005, , 265-334.		4
100	Measuring Single Cell and Subcellular Ca2+ Signals. , 2005, , 387-416.		0
101	Organelle Selection Determines Agonist-specific Ca2+ Signals in Pancreatic Acinar and Î ² Cells. Journal of Biological Chemistry, 2004, 279, 7234-7240.	3.4	192
102	NAADP-induced Ca2+ Release - A new signalling pathway. Biology of the Cell, 2004, 96, 19-28.	2.0	43
103	Determination of cellular nicotinic acid-adenine dinucleotide phosphate (NAADP) levels. Biochemical Journal, 2004, 380, 449-454.	3.7	39
104	Sperm Deliver a New Second Messenger. Current Biology, 2003, 13, 125-128.	3.9	155
105	NAADP on the up in pancreatic beta cells?a sweet message?. BioEssays, 2003, 25, 430-433.	2.5	13
106	Modulation of spontaneous transmitter release from the frog neuromuscular junction by interacting intracellular Ca2+ stores: critical role for nicotinic acid-adenine dinucleotide phosphate (NAADP). Biochemical Journal, 2003, 373, 313-318.	3.7	46
107	Modulation of NAADP (nicotinic acid–adenine dinucleotide phosphate) receptors by K+ ions: evidence for multiple NAADP receptor conformations. Biochemical Journal, 2003, 375, 805-812.	3.7	37
108	Inducible Nitric-oxide Synthase Attenuates Vasopressin-dependent Ca2+ Signaling in Rat Hepatocytes. Journal of Biological Chemistry, 2002, 277, 33776-33782.	3.4	8

#	Article	IF	CITATIONS
109	Solubilization of Receptors for the Novel Ca2+-mobilizing Messenger, Nicotinic Acid Adenine Dinucleotide Phosphate. Journal of Biological Chemistry, 2002, 277, 43717-43723.	3.4	51
110	Metabolism of the novel Ca2+-mobilizing messenger nicotinic acid–adenine dinucleotide phosphate via a 2′-specific Ca2+-dependent phosphatase. Biochemical Journal, 2002, 365, 295-301.	3.7	43
111	NAADP Mobilizes Ca2+ from Reserve Granules, Lysosome-Related Organelles, in Sea Urchin Eggs. Cell, 2002, 111, 703-708.	28.9	442
112	Spatial and Temporal Control of Calcium Signaling by NAADP. , 2002, , 199-215.		2
113	Coordination of Ca2+ signalling by NAADP. Trends in Biochemical Sciences, 2001, 26, 482-489.	7.5	151
114	Measuring Single-Cell Cytosolic Ca ²⁺ Concentration in Response to Proteoglycans. , 2001, 171, 435-448.		2
115	Unique kinetics of nicotinic acid‒adenine dinucleotide phosphate (NAADP) binding enhance the sensitivity of NAADP receptors for their ligand. Biochemical Journal, 2000, 352, 725.	3.7	19
116	Unique kinetics of nicotinic acid–adenine dinucleotide phosphate (NAADP) binding enhance the sensitivity of NAADP receptors for their ligand. Biochemical Journal, 2000, 352, 725-729.	3.7	51
117	NAADP-induced calcium release in sea urchin eggs. Biology of the Cell, 2000, 92, 197-204.	2.0	61
118	Widespread Distribution of Binding Sites for the Novel Ca2+-mobilizing Messenger, Nicotinic Acid Adenine Dinucleotide Phosphate, in the Brain. Journal of Biological Chemistry, 2000, 275, 36495-36497.	3.4	57
119	Coordination of calcium signalling by endothelial-derived nitric oxide in the intact liver. Nature Cell Biology, 1999, 1, 467-471.	10.3	56
120	Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium, 1999, 25, 247-264.	2.4	435
121	Decorin Activates the Epidermal Growth Factor Receptor and Elevates Cytosolic Ca2+ in A431 Carcinoma Cells. Journal of Biological Chemistry, 1998, 273, 3121-3124.	3.4	120
122	Kinetic Analysis of Inositol Trisphosphate Binding to Pure Inositol Trisphosphate Receptors Using Scintillation Proximity Assay. Biochemical and Biophysical Research Communications, 1996, 221, 821-825.	2.1	15