Kazuhiko Maeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1074772/publications.pdf

Version: 2024-02-01

265 papers 45,955 citations

88 h-index 212 g-index

288 all docs 288 docs citations

288 times ranked

25973 citing authors

#	Article	IF	CITATIONS
1	Recent Progress on Mixed-Anion Materials for Energy Applications. Bulletin of the Chemical Society of Japan, 2022, 95, 26-37.	3. 2	51
2	Synthesis and applications of carbon nitride (CN) family with different carbon to nitrogen ratio. Carbon, 2022, 188, 482-491.	10.3	22
3	Anion Substitution at Apical Sites of Ruddlesden–Popper-type Cathodes toward High Power Density for All-Solid-State Fluoride-Ion Batteries. Chemistry of Materials, 2022, 34, 609-616.	6.7	13
4	Photocatalytic Water Oxidation by Phosphotungstate and Mg-Al Layered Double Hydroxide Hybrid. Chemistry Letters, 2022, 51, 107-110.	1.3	1
5	A two-dimensional perovskite oxyfluoride Pb ₃ Fe ₅ Fesub>3Fe ₂ O ₅ Fesub>2Guidation of water to oxygen. Sustainable Energy and Fuels, 2022, 6, 2423-2427.	4.9	2
6	Synthesis of Hydride-Doped Perovskite Stannate with Visible Light Absorption Capability. Inorganic Chemistry, 2022, , .	4.0	2
7	Fluorine-Assisted Low-Temperature Synthesis of GaN:ZnO-Related Solid Solutions with Visible-Light Photoresponse. ACS Applied Materials & Samp; Interfaces, 2022, 14, 19756-19765.	8.0	3
8	Aluminaâ€Supported Alphaâ€Iron(III) Oxyhydroxide as a Recyclable Solid Catalyst for CO ₂ Photoreduction under Visible Light. Angewandte Chemie, 2022, 134, .	2.0	2
9	Aluminaâ€Supported Alphaâ€Iron(III) Oxyhydroxide as a Recyclable Solid Catalyst for CO ₂ Photoreduction under Visible Light. Angewandte Chemie - International Edition, 2022, 61, e202204948.	13.8	15
10	Improvement of Visibleâ€Light H ₂ Evolution Activity of Pb ₂ Ti ₂ O _{5.4} F _{1.2} Photocatalyst by Coloading of Rh and Pd Cocatalysts. Chemistry - A European Journal, 2022, 28, .	3.3	2
11	Titelbild: Aluminaâ€Supported Alphaâ€Iron(III) Oxyhydroxide as a Recyclable Solid Catalyst for CO ₂ Photoreduction under Visible Light (Angew. Chem. 26/2022). Angewandte Chemie, 2022, 134, .	2.0	O
12	Selective CO2 reduction into formate using Ln–Ta oxynitrides combined with a binuclear Ru(II) complex under visible light. Journal of Energy Chemistry, 2021, 55, 176-182.	12.9	14
13	Recent Progress in Mixedâ€Anion Materials for Solar Fuel Production. Solar Rrl, 2021, 5, 2000521.	5. 8	21
14	A bifunctional lead–iron oxyfluoride, PbFeO ₂ F, that functions as a visible-light-responsive photoanode and an electrocatalyst for water oxidation. RSC Advances, 2021, 11, 25616-25623.	3.6	2
15	Effects of Nitrogen/Fluorine Codoping on Photocatalytic Rutile TiO ₂ Crystal Studied by First-Principles Calculations. Inorganic Chemistry, 2021, 60, 2381-2389.	4.0	9
16	Molecule/Semiconductor Hybrid Materials for Visible-Light CO ₂ Reduction: Design Principles and Interfacial Engineering. Accounts of Materials Research, 2021, 2, 458-470.	11.7	51
17	(Invited) Dye-Sensitized Oxide Nanosheets for Visible-Light Water Splitting. ECS Meeting Abstracts, 2021, MA2021-01, 1273-1273.	0.0	O
18	Sn-Based Perovskite with a Wide Visible-Light Absorption Band Assisted by Hydride Doping. Chemistry of Materials, 2021, 33, 3631-3638.	6.7	12

#	Article	IF	Citations
19	Improvement of a Pb2Ti2O5.4F1.2 Photoanode for Solar Water Splitting by Refining the Cocatalyst and Electrolyte. Bulletin of the Chemical Society of Japan, 2021, 94, 1869-1874.	3.2	4
20	Control of the Photocatalytic Activity of Metastable Layered Oxynitride K ₂ LaTa ₂ O ₆ N through Topochemical Transformation of Tuned Oxide Precursors. Chemistry of Materials, 2021, 33, 6443-6452.	6.7	8
21	Electrochemical Crystal Growth of Titanium Oxyfluoridesâ€"A Strategy for Development of Electron-Doped Materials. Inorganic Chemistry, 2021, 60, 14613-14621.	4.0	1
22	An Improved Z-Scheme for Overall Water Splitting Using Dye-Sensitized Calcium Niobate Nanosheets Synthesized by a Flux Method. ACS Applied Energy Materials, 2021, 4, 10145-10152.	5.1	12
23	<i>In situ</i> formation of a molecular cobalt(<scp>iii</scp>)/AgCl photocatalyst for visible-light water oxidation. Sustainable Energy and Fuels, 2021, 5, 5694-5698.	4.9	0
24	Excited Carrier Dynamics in a Dye-Sensitized Niobate Nanosheet Photocatalyst for Visible-Light Hydrogen Evolution. ACS Catalysis, 2021, 11, 659-669.	11.2	22
25	Reversible and Fast (De)fluorination of Highâ€Capacity Cu ₂ O Cathode: One Step Toward Practically Applicable Allâ€Solidâ€State Fluorideâ€Ion Battery. Advanced Energy Materials, 2021, 11, 2102285.	19.5	23
26	Accelerated lithium ions diffusion at the interface between LiFePO4 electrode and electrolyte by surface-nitride treatment. Solid State Ionics, 2021, 373, 115792.	2.7	2
27	A Bifunctional Lead–Iron Oxyfluoride, PbFeO2F, That Drives Photoelectrochemical and Electrochemical Water Oxidation. ECS Meeting Abstracts, 2021, MA2021-02, 1736-1736.	0.0	0
28	Improved Electrochemical Water Oxidation over Chromium-Substituted Cobalt Aluminate Spinels. Bulletin of the Chemical Society of Japan, 2020, 93, 13-19.	3.2	5
29	Light Absorption Properties and Electronic Band Structures of Leadâ€Vanadium Oxyhalide Apatites Pb 5 (VO 4) 3 X (X=F, Cl, Br, I). Chemistry - an Asian Journal, 2020, 15, 540-545.	3.3	6
30	Oxyfluoride Pb ₂ Ti ₄ O ₉ F ₂ as a Stable Anode Material for Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2020, 124, 1844-1850.	3.1	16
31	Synthesis of Copolymerized Carbon Nitride Nanosheets from Urea and 2â€Aminobenzonitrile for Enhanced Visible Light CO ₂ Reduction with a Ruthenium(II) Complex Catalyst. Solar Rrl, 2020, 4, 1900461.	5.8	13
32	Synthesis of Three-Layer Perovskite Oxynitride K ₂ Ca ₂ Caasub>2Ta ₃ O ₉ N·2H ₂ O and Photocatalytic Activity for H ₂ Evolution under Visible Light. Inorganic Chemistry, 2020, 59, 11122-11128.	4.0	20
33	Photochemical synthesis of nanoscale multicomponent metal species and their application to photocatalytic and electrochemical water splitting. , 2020, , 19-38.		3
34	Emerging Nanomaterials for Lightâ€Driven Reactions: Past, Present, and Future. Solar Rrl, 2020, 4, 2000354.	5.8	3
35	Capacity Improvement by Nitrogen Doping to Lithium-Rich Cathode Materials with Stabilization Effect of Oxide Ions Redox. ACS Applied Energy Materials, 2020, 3, 4162-4167.	5.1	18
36	Site-Selective Deposition of a Cobalt Cocatalyst onto a Plasmonic Au/TiO ₂ Photoanode for Improved Water Oxidation. ACS Applied Energy Materials, 2020, 3, 5142-5146.	5.1	26

#	Article	IF	CITATIONS
37	Nano <i>vs.</i> bulk rutile TiO ₂ :N,F in Z-scheme overall water splitting under visible light. Journal of Materials Chemistry A, 2020, 8, 11996-12002.	10.3	23
38	Structureâ€Activity Relationship in a Cobalt Aluminate Nanoparticle Cocatalyst with a Graphitic Carbon Nitride Photocatalyst for Visibleâ€Light Water Oxidation. ChemPhotoChem, 2020, 4, 5175-5180.	3.0	1
39	Visible-Light-Induced Photocatalytic Activity of Stacked MXene Sheets of Y ₂ CF ₂ . Journal of Physical Chemistry C, 2020, 124, 14640-14645.	3.1	22
40	Boosting photocatalytic H ₂ O ₂ production by coupling of sulfuric acid and 5-sulfosalicylic acid incorporated polyaniline with g-C ₃ N ₄ . Sustainable Energy and Fuels, 2020, 4, 4186-4195.	4.9	14
41	Twoâ€Dimensional Perovskite Oxynitride K ₂ LaTa ₂ O ₆ N with an H ⁺ /K ⁺ Exchangeability in Aqueous Solution Forming a Stable Photocatalyst for Visibleâ€Light H ₂ Evolution. Angewandte Chemie, 2020, 132, 9823-9830.	2.0	4
42	Efficient Visible-Light-Driven CO ₂ Reduction by a Cobalt Molecular Catalyst Covalently Linked to Mesoporous Carbon Nitride. Journal of the American Chemical Society, 2020, 142, 6188-6195.	13.7	199
43	Rutile TiO2–based new photocatalysts for visible light water oxidation. , 2020, , 7-22.		1
44	Twoâ€Dimensional Perovskite Oxynitride K ₂ LaTa ₂ O ₆ N with an H ⁺ /K ⁺ Exchangeability in Aqueous Solution Forming a Stable Photocatalyst for Visible‣ight H ₂ Evolution. Angewandte Chemie - International Edition, 2020, 59, 9736-9743.	13.8	33
45	Selective metathesis synthesis of MgCr ₂ S ₄ by control of thermodynamic driving forces. Materials Horizons, 2020, 7, 1310-1316.	12.2	27
46	Water Oxidation through Interfacial Electron Transfer by Visible Light Using Cobalt-Modified Rutile Titania Thin-Film Photoanode. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9219-9225.	8.0	12
47	Cobalt Aluminate Spinel as a Cocatalyst for Photocatalytic Oxidation of Water: Significant Hole-Trapping Effect. ACS Catalysis, 2020, 10, 4960-4966.	11.2	33
48	An Artificial Z-Scheme Constructed from Dye-Sensitized Metal Oxide Nanosheets for Visible Light-Driven Overall Water Splitting. Journal of the American Chemical Society, 2020, 142, 8412-8420.	13.7	103
49	Activation of a Pt-loaded Pb ₂ Ti ₂ O _{5.4} F _{1.2} photocatalyst by alkaline chloride treatment for improved H ₂ evolution under visible light. Journal of Materials Chemistry A, 2020, 8, 9099-9108.	10.3	11
50	Solar Water Oxidation by a Visibleâ€Lightâ€Responsive Tantalum/Nitrogenâ€Codoped Rutile Titania Anode for Photoelectrochemical Water Splitting and Carbon Dioxide Fixation. ChemPhotoChem, 2019, 3, 37-45.	3.0	34
51	Enhanced water splitting through two-step photoexcitation by sunlight using tantalum/nitrogen-codoped rutile titania as a water oxidation photocatalyst. Sustainable Energy and Fuels, 2019, 3, 2337-2346.	4.9	14
52	An electronic structure governed by the displacement of the indium site in In–S ₆ octahedra: LnOInS ₂ (Ln = La, Ce, and Pr). Dalton Transactions, 2019, 48, 12272-12278.	3.3	8
53	Defect Density-Dependent Electron Injection from Excited-State Ru(II) Tris-Diimine Complexes into Defect-Controlled Oxide Semiconductors. Journal of Physical Chemistry C, 2019, 123, 28310-28318.	3.1	9
54	Synergistic Effect of Hydrochloric Acid and Phytic Acid Doping on Polyaniline-Coupled g-C ₃ N ₄ Nanosheets for Photocatalytic Cr(VI) Reduction and Dye Degradation. ACS Applied Materials & Degradation.	8.0	89

#	Article	IF	CITATIONS
55	Solar-Driven Photoelectrochemical Water Oxidation over an n-Type Lead–Titanium Oxyfluoride Anode. Journal of the American Chemical Society, 2019, 141, 17158-17165.	13.7	38
56	Photocatalytic overall water splitting on Pt nanocluster-intercalated, restacked KCa ₂ Nb ₃ O ₁₀ nanosheets: the promotional effect of co-existing ions. Nanoscale Advances, 2019, 1, 189-194.	4.6	17
57	Solar Water Oxidation by a Visible-Light-Responsive Tantalum/Nitrogen-Codoped Rutile Titania Anode for Photoelectrochemical Water Splitting and Carbon Dioxide Fixation. ChemPhotoChem, 2019, 3, 3-3.	3.0	1
58	Structure and Photocatalytic Activity of PdCrOx Cocatalyst on SrTiO3 for Overall Water Splitting. Catalysts, 2019, 9, 59.	3.5	24
59	Earth-Abundant Molecular Z-Scheme Photoelectrochemical Cell for Overall Water-Splitting. Journal of the American Chemical Society, 2019, 141, 9593-9602.	13.7	84
60	Oxygenâ€Doped Ta ₃ N ₅ Nanoparticles for Enhanced Zâ€6cheme Carbon Dioxide Reduction with a Binuclear Ruthenium(II) Complex under Visible Light. ChemPhotoChem, 2019, 3, 1027-1033.	3.0	10
61	Direct evidence for two-dimensional oxide-ion diffusion in the hexagonal perovskite-related oxide Ba ₃ MoNbO _{8.5â^Î′} . Journal of Materials Chemistry A, 2019, 7, 13910-13916.	10.3	44
62	Facile p–n control, and magnetic and thermoelectric properties of chromium selenides Cr2+xSe3. Journal of Materials Chemistry C, 2019, 7, 8269-8276.	5.5	18
63	Metalâ€Complex/Semiconductor Hybrid Photocatalysts and Photoelectrodes for CO ₂ Reduction Driven by Visible Light. Advanced Materials, 2019, 31, e1808205.	21.0	196
64	Synthesis of a Layered Niobium Oxynitride, Rb ₂ NA·H ₂ O, Showing Visible-Light Photocatalytic Activity for H ₂ Evolution. Inorganic Chemistry, 2019, 58, 6161-6166.	4.0	23
65	Selective Synthesis and Photocatalytic Oxygen Evolution Activities of Tantalum/Nitrogen-Codoped Anatase, Brookite and Rutile Titanium Dioxide. Bulletin of the Chemical Society of Japan, 2019, 92, 1032-1038.	3.2	8
66	Visible-Light-Driven Water Oxidation Using Anatase Titania Modified with First-Row Transition-Metal-Oxide Nanoclusters. Journal of Physical Chemistry C, 2019, 123, 10429-10434.	3.1	13
67	A zinc-based oxysulfide photocatalyst SrZn ₂ S ₂ O capable of reducing and oxidizing water. Dalton Transactions, 2019, 48, 15778-15781.	3.3	21
68	Crucial impact of reduction on the photocarrier dynamics of SrTiO ₃ powders studied by transient absorption spectroscopy. Journal of Materials Chemistry A, 2019, 7, 26139-26146.	10.3	21
69	A Visible-Light-Driven Z-Scheme CO2 Reduction System Using Ta3N5 and a Ru(II) Binuclear Complex. Bulletin of the Chemical Society of Japan, 2019, 92, 124-126.	3.2	24
70	Two-Dimensional Metal Oxide Nanosheets as Building Blocks for Artificial Photosynthetic Assemblies. Bulletin of the Chemical Society of Japan, 2019, 92, 38-54.	3.2	175
71	Expanding frontiers in materials chemistry and physics with multiple anions. Nature Communications, 2018, 9, 772.	12.8	612
72	Visible-light CO ₂ reduction over a ruthenium(<scp>ii</scp>)-complex/C ₃ N ₄ hybrid photocatalyst: the promotional effect of silver species. Journal of Materials Chemistry A, 2018, 6, 9708-9715.	10.3	31

#	Article	IF	Citations
73	New Precursor Route Using a Compositionally Flexible Layered Oxide and Nanosheets for Improved Nitrogen Doping and Photocatalytic Activity. ACS Applied Energy Materials, 2018, 1, 1734-1741.	5.1	10
74	CO2 reduction using oxynitrides and nitrides under visible light. Progress in Solid State Chemistry, 2018, 51, 52-62.	7.2	23
75	Influence of TiO2 Support on Activity of Co3O4/TiO2 Photocatalysts for Visible-Light Water Oxidation. Bulletin of the Chemical Society of Japan, 2018, 91, 486-491.	3.2	16
76	Light Absorption Properties and Electronic Band Structures of Lead Titanium Oxyfluoride Photocatalysts Pb ₂ Ti ₄ O ₉ F ₂ and Pb ₂ Ti ₂ O _{5.4} F _{1.2} . Journal of Physical Chemistry C, 2018, 122, 26506-26511.	3.1	31
77	Analysis of Optical Properties and Structures of Nitrogen Doped Gallium Oxide. E-Journal of Surface Science and Nanotechnology, 2018, 16, 262-266.	0.4	10
78	High Rate Performance of Dual-Substituted LiFePO ₄ Based on Controlling Metastable Intermediate Phase. ACS Applied Energy Materials, 2018, 1, 6736-6740.	5.1	9
79	Mechanistic Insight on the Formation of GaN:ZnO Solid Solution from Zn-Ga Layered Double Hydroxide Using Urea as the Nitriding Agent. Inorganic Chemistry, 2018, 57, 13953-13962.	4.0	20
80	Copolymerization Approach to Improving Ru(II)-Complex/C ₃ N ₄ Hybrid Photocatalysts for Visible-Light CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2018, 6, 15333-15340.	6.7	40
81	Effects of Interfacial Electron Transfer in Metal Complex–Semiconductor Hybrid Photocatalysts on Z-Scheme CO ₂ Reduction under Visible Light. ACS Catalysis, 2018, 8, 9744-9754.	11.2	60
82	Nitrogen/fluorine-codoped rutile titania as a stable oxygen-evolution photocatalyst for solar-driven Z-scheme water splitting. Sustainable Energy and Fuels, 2018, 2, 2025-2035.	4.9	36
83	Excited-State Dynamics of Graphitic Carbon Nitride Photocatalyst and Ultrafast Electron Injection to a Ru(II) Mononuclear Complex for Carbon Dioxide Reduction. Journal of Physical Chemistry C, 2018, 122, 16795-16802.	3.1	39
84	Graphitic carbon nitride prepared from urea as a photocatalyst for visible-light carbon dioxide reduction with the aid of a mononuclear ruthenium(II) complex. Beilstein Journal of Organic Chemistry, 2018, 14, 1806-1812.	2.2	38
85	Hybrid Z-scheme nanocomposites for photocatalysis. , 2018, , 289-306.		1
86	Undoped Layered Perovskite Oxynitride Li ₂ LaTa ₂ O ₆ N for Photocatalytic CO ₂ Reduction with Visible Light. Angewandte Chemie, 2018, 130, 8286-8290.	2.0	17
87	Undoped Layered Perovskite Oxynitride Li ₂ LaTa ₂ O ₆ N for Photocatalytic CO ₂ Reduction with Visible Light. Angewandte Chemie - International Edition, 2018, 57, 8154-8158.	13.8	66
88	A Stable, Narrow-Gap Oxyfluoride Photocatalyst for Visible-Light Hydrogen Evolution and Carbon Dioxide Reduction. Journal of the American Chemical Society, 2018, 140, 6648-6655.	13.7	139
89	Rapid deposition and thermoelectric properties of ytterbium boride thin films using hybrid physical chemical vapor deposition. Materialia, 2018, 1, 244-248.	2.7	12
90	Water Splitting on Rutile TiO ₂ â€Based Photocatalysts. Chemistry - A European Journal, 2018, 24, 18204-18219.	3.3	142

#	Article	IF	Citations
91	A Carbon Nitride/Fe Quaterpyridine Catalytic System for Photostimulated CO ₂ -to-CO Conversion with Visible Light. Journal of the American Chemical Society, 2018, 140, 7437-7440.	13.7	160
92	Homogeneous Electron Doping into Nonstoichiometric Strontium Titanate Improves Its Photocatalytic Activity for Hydrogen and Oxygen Evolution. ACS Catalysis, 2018, 8, 7190-7200.	11.2	34
93	Photocatalytic Property of Mixed Anion Compounds. Nihon Kessho Gakkaishi, 2018, 60, 260-267.	0.0	1
94	Development of hybrid photocatalysts constructed with a metal complex and graphitic carbon nitride for visible-light-driven CO ₂ reduction. Physical Chemistry Chemical Physics, 2017, 19, 4938-4950.	2.8	54
95	Solar-driven Z-scheme water splitting using tantalum/nitrogen co-doped rutile titania nanorod as an oxygen evolution photocatalyst. Journal of Materials Chemistry A, 2017, 5, 11710-11719.	10.3	101
96	Cobalt Oxide Nanoclusters on Rutile Titania as Bifunctional Units for Water Oxidation Catalysis and Visible Light Absorption: Understanding the Structure–Activity Relationship. ACS Applied Materials & & & & & & & & & & & & & & & & & & &	8.0	54
97	Synthesis and photocatalytic activity of K ₂ CaNaNb ₃ O ₁₀ , a new Ruddlesden–Popper phase layered perovskite. Dalton Transactions, 2017, 46, 10594-10601.	3.3	46
98	Chromium-substituted hematite powder as a catalytic material for photochemical and electrochemical water oxidation. Catalysis Science and Technology, 2017, 7, 2940-2946.	4.1	18
99	Synthesis, structure and photocatalytic activity of layered LaOInS ₂ . Journal of Materials Chemistry A, 2017, 5, 14270-14277.	10.3	30
100	Hybrid photocathode consisting of a CuGaO ₂ p-type semiconductor and a Ru(<scp>ii</scp>)–Re(<scp>i</scp>) supramolecular photocatalyst: non-biased visible-light-driven CO ₂ reduction with water oxidation. Chemical Science, 2017, 8, 4242-4249.	7.4	136
101	Robust Binding between Carbon Nitride Nanosheets and a Binuclear Ruthenium(II) Complex Enabling Durable, Selective CO ₂ Reduction under Visible Light in Aqueous Solution. Angewandte Chemie, 2017, 129, 4945-4949.	2.0	52
102	Robust Binding between Carbon Nitride Nanosheets and a Binuclear Ruthenium(II) Complex Enabling Durable, Selective CO ₂ Reduction under Visible Light in Aqueous Solution. Angewandte Chemie - International Edition, 2017, 56, 4867-4871.	13.8	223
103	Structures, electron density and characterization of novel photocatalysts, (BaTaO ₂ N) _{1â^'x} (SrWO ₂ N) _x solid solutions. Dalton Transactions, 2017, 46, 14947-14956.	3.3	16
104	Inert Layered Silicate Improves the Electrochemical Responses of a Metal Complex Polymer. ACS Applied Materials & District Samp; Interfaces, 2017, 9, 35498-35503.	8.0	23
105	Light-Induced Water Splitting Using Layered Metal Oxides and Nanosheets. Semiconductors and Semimetals, 2017, , 257-288.	0.7	1
106	Effects of the SrTiO ₃ support on visible-light water oxidation with Co ₃ O ₄ nanoparticles. Dalton Transactions, 2017, 46, 16959-16966.	3.3	10
107	Interfacial Manipulation by Rutile TiO ₂ Nanoparticles to Boost CO ₂ Reduction into CO on a Metal-Complex/Semiconductor Hybrid Photocatalyst. ACS Applied Materials & amp; Interfaces, 2017, 9, 23869-23877.	8.0	69
108	Activation of the Carbon Nitride Surface by Silica in a COâ€Evolving Hybrid Photocatalyst. ChemSusChem, 2017, 10, 287-295.	6.8	36

#	Article	IF	Citations
109	Development of Defect-controlled, Visible-light-responsive Rutile TiO ₂ Photocatalysts. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2016, 24, 92-97.	0.0	0
110	Photocatalytic Water Oxidation over Metal Oxide Nanosheets Having a Three‣ayer Perovskite Structure. ChemSusChem, 2016, 9, 396-402.	6.8	21
111	Modification of Wideâ€Bandâ€Gap Oxide Semiconductors with Cobalt Hydroxide Nanoclusters for Visibleâ€Light Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 8309-8313.	13.8	77
112	Nature-Inspired, Highly Durable CO ₂ Reduction System Consisting of a Binuclear Ruthenium(II) Complex and an Organic Semiconductor Using Visible Light. Journal of the American Chemical Society, 2016, 138, 5159-5170.	13.7	403
113	A Z-scheme photocatalyst constructed with an yttrium–tantalum oxynitride and a binuclear Ru(<scp>ii</scp>) complex for visible-light CO ₂ reduction. Chemical Communications, 2016, 52, 7886-7889.	4.1	54
114	Z-scheme reduction of carbon dioxide with visible light using a binuclear metal complex and a semiconductor. Proceedings of SPIE, 2016, , .	0.8	0
115	Modification of small noble metal particles on KCa2Nb3O10 restacked nanosheets and the photocatalytic activity. , 2016, , .		1
116	Photoelectrochemical Reduction of CO ₂ Coupled to Water Oxidation Using a Photocathode with a Ru(II)–Re(I) Complex Photocatalyst and a CoO _{<i>x</i>/sub>/TaON Photoanode. Journal of the American Chemical Society, 2016, 138, 14152-14158.}	13.7	260
117	Development of Novel Photocatalyst and Cocatalyst Materials for Water Splitting under Visible Light. Bulletin of the Chemical Society of Japan, 2016, 89, 627-648.	3.2	154
118	Photocatalytic Activity of Carbon Nitride Modified with a Ruthenium(II) Complex Having Carboxylicor Phosphonic Acid Anchoring Groups for Visible-light CO ₂ Reduction. Chemistry Letters, 2016, 45, 182-184.	1.3	45
119	Photochemical Synthesis of Fe(III)–Cr(III) Mixed Oxide Nanoparticles on Strontium Titanate Powder and Their Application as Water Oxidation Cocatalysts. Chemistry Letters, 2016, 45, 967-969.	1.3	9
120	Modification of Wideâ€Bandâ€Gap Oxide Semiconductors with Cobalt Hydroxide Nanoclusters for Visibleâ€Light Water Oxidation. Angewandte Chemie, 2016, 128, 8449-8453.	2.0	10
121	Preparation of Ptâ€Intercalated KCa ₂ Nb ₃ O ₁₀ Nanosheets and Their Photocatalytic Activity for Overall Water Splitting. ChemNanoMat, 2016, 2, 748-755.	2.8	13
122	Selective dual-purpose photocatalysis for simultaneous H ₂ evolution and mineralization of organic compounds enabled by a Cr ₂ O ₃ barrier layer coated on Rh/SrTiO ₃ . Chemical Communications, 2016, 52, 9636-9639.	4.1	39
123	Visible-light-driven CO ₂ reduction on a hybrid photocatalyst consisting of a Ru(<scp>ii</scp>) binuclear complex and a Ag-loaded TaON in aqueous solutions. Chemical Science, 2016, 7, 4364-4371.	7.4	96
124	Unique Solvent Effects on Visible-Light CO ₂ Reduction over Ruthenium(II)-Complex/Carbon Nitride Hybrid Photocatalysts. ACS Applied Materials & Diterfaces, 2016, 8, 6011-6018.	8.0	118
125	Photocatalytic Approach for CO2 Fixation. Lecture Notes in Energy, 2016, , 153-171.	0.3	1
126	Light-Induced Synthesis of Heterojunctioned Nanoparticles on a Semiconductor as Durable Cocatalysts for Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7165-7172.	8.0	28

#	Article	IF	Citations
127	Structural effects of two-dimensional perovskite Ca ₂ Nb ₂ TaO ₁₀ ^{â^'} nanosheets for photocatalytic hydrogen evolution. Catalysis Science and Technology, 2016, 6, 1064-1069.	4.1	24
128	Highly efficient visible-light-driven CO ₂ reduction to CO using a Ru(<scp>ii</scp>)–Re(<scp>i</scp>) supramolecular photocatalyst in an aqueous solution. Green Chemistry, 2016, 18, 139-143.	9.0	78
129	A Rutile Titania Photoanode for Solar Water Oxidation Workable under Mild Conditions. Chemistry Letters, 2015, 44, 934-936.	1.3	4
130	Photoelectrochemical CO ₂ reduction using a Ru(<scp>ii</scp>)–Re(<scp>i</scp>) multinuclear metal complex on a p-type semiconducting NiO electrode. Chemical Communications, 2015, 51, 10722-10725.	4.1	131
131	Selective Formic Acid Production via CO ₂ Reduction with Visible Light Using a Hybrid of a Perovskite Tantalum Oxynitride and a Binuclear Ruthenium(II) Complex. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13092-13097.	8.0	120
132	Hydrothermal synthesis of rhodium-doped barium titanate nanocrystals for enhanced photocatalytic hydrogen evolution under visible light. RSC Advances, 2015, 5, 100123-100128.	3.6	23
133	Intercalation of Highly Dispersed Metal Nanoclusters into a Layered Metal Oxide for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 2698-2702.	13.8	117
134	Intercalation of Highly Dispersed Metal Nanoclusters into a Layered Metal Oxide for Photocatalytic Overall Water Splitting. Angewandte Chemie, 2015, 127, 2736-2740.	2.0	17
135	Hybrids of a Ruthenium(II) Polypyridyl Complex and a Metal Oxide Nanosheet for Dye-Sensitized Hydrogen Evolution with Visible Light: Effects of the Energy Structure on Photocatalytic Activity. ACS Catalysis, 2015, 5, 1700-1707.	11.2	83
136	Visibleâ€Lightâ€Driven CO ₂ Reduction with Carbon Nitride: Enhancing the Activity of Ruthenium Catalysts. Angewandte Chemie, 2015, 127, 2436-2439.	2.0	92
137	Visibleâ€Lightâ€Driven CO ₂ Reduction with Carbon Nitride: Enhancing the Activity of Ruthenium Catalysts. Angewandte Chemie - International Edition, 2015, 54, 2406-2409.	13.8	540
138	Emission spectroscopy of a ruthenium(<scp>ii</scp>) polypyridyl complex adsorbed on calcium niobate lamellar solids and nanosheets. Physical Chemistry Chemical Physics, 2015, 17, 17962-17966.	2.8	10
139	Metal-complex/semiconductor hybrids for carbon dioxide fixation. , 2015, , .		2
140	Perovskite Oxide Nanosheets with Tunable Bandâ€Edge Potentials and High Photocatalytic Hydrogenâ€Evolution Activity. Angewandte Chemie - International Edition, 2014, 53, 13164-13168.	13.8	104
141	Effect of Hydrogen and Oxygen Evolution Cocatalysts on Photocatalytic Activity of GaN:ZnO. European Journal of Inorganic Chemistry, 2014, 2014, 767-772.	2.0	52
142	Preparation of BaZrO3–BaTaO2N solid solutions and the photocatalytic activities for water reduction and oxidation under visible light. Journal of Catalysis, 2014, 310, 67-74.	6.2	56
143	Photocatalytic properties of rutile TiO ₂ powder for overall water splitting. Catalysis Science and Technology, 2014, 4, 1949-1953.	4.1	49
144	Effect of post-treatments on the photocatalytic activity of Sm2Ti2S2O5 for the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2014, 16, 12051.	2.8	53

#	Article	IF	CITATIONS
145	Nonâ€Sacrificial Water Photoâ€Oxidation Activity of Lamellar Calcium Niobate Induced by Exfoliation. Advanced Materials Interfaces, 2014, 1, 1400131.	3.7	30
146	The effect of the pore-wall structure of carbon nitride on photocatalytic CO ₂ reduction under visible light. Journal of Materials Chemistry A, 2014, 2, 15146-15151.	10.3	192
147	Fabrication of photocatalyst panels and the factors determining their activity for water splitting. Catalysis Science and Technology, 2014, 4, 325-328.	4.1	40
148	Dependence of Activity of Rutile Titanium(IV) Oxide Powder for Photocatalytic Overall Water Splitting on Structural Properties. Journal of Physical Chemistry C, 2014, 118, 9093-9100.	3.1	59
149	Effects of the Physicochemical Properties of Rutile Titania Powder on Photocatalytic Water Oxidation. ACS Catalysis, 2014, 4, 1632-1636.	11.2	34
150	Rhodium-Doped Barium Titanate Perovskite as a Stable p-Type Semiconductor Photocatalyst for Hydrogen Evolution under Visible Light. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2167-2173.	8.0	154
151	Highly Efficient Water Oxidation on Rutile Titanium(IV) Oxide Powder in the Presence of Iodate Ions as Reversible Electron Acceptors. Chemistry Letters, 2014, 43, 1287-1288.	1.3	7
152	Design of Medium Band Gap Ag–Bi–Nb–O and Ag–Bi–Ta–O Semiconductors for Driving Direct Wate Splitting with Visible Light. Inorganic Chemistry, 2013, 52, 9192-9205.	^r 4.0	9
153	Solar-Driven Z-scheme Water Splitting Using Modified BaZrO ₃ –BaTaO ₂ N Solid Solutions as Photocatalysts. ACS Catalysis, 2013, 3, 1026-1033.	11.2	143
154	Direct splitting of pure water into hydrogen and oxygen using rutile titania powder as a photocatalyst. Chemical Communications, 2013, 49, 8404.	4.1	106
155	A polymeric-semiconductor–metal-complex hybrid photocatalyst for visible-light CO2 reduction. Chemical Communications, 2013, 49, 10127.	4.1	252
156	Composite of Rh y Cr2â^'y O3/(Ga1â^'x Zn x)(N1â^'x O x) Photocatalysts with Hydrophobic Polytetrafluoroethylene (PTFE) Membranes for the Fabrication of Novel Reaction Sites for Water Vapor Splitting Under Visible Light. Catalysis Letters, 2013, 143, 150-153.	2.6	4
157	Synthesis and Photocatalytic Activity of Poly(triazine imide). Chemistry - an Asian Journal, 2013, 8, 218-224.	3.3	131
158	Artificial Z-Scheme Constructed with a Supramolecular Metal Complex and Semiconductor for the Photocatalytic Reduction of CO ₂ . Journal of the American Chemical Society, 2013, 135, 4596-4599.	13.7	404
159	Direct Water Splitting into Hydrogen and Oxygen under Visible Light by using Modified TaON Photocatalysts with d ⁰ Electronic Configuration. Chemistry - A European Journal, 2013, 19, 4986-4991.	3.3	160
160	A Redoxâ€Mediatorâ€Free Solarâ€Driven Zâ€Scheme Waterâ€Splitting System Consisting of Modified Ta ₃ N ₅ as an Oxygenâ€Evolution Photocatalyst. Chemistry - A European Journal, 2013, 19, 7480-7486.	3.3	113
161	(Oxy)nitrides with d0-electronic configuration as photocatalysts and photoanodes that operate under a wide range of visible light for overall water splitting. Physical Chemistry Chemical Physics, 2013, 15, 10537.	2.8	97
162	Oxidation of Water under Visibleâ€Light Irradiation over Modified BaTaO ₂ N Photocatalysts Promoted by Tungsten Species. Angewandte Chemie - International Edition, 2013, 52, 6488-6491.	13.8	91

#	Article	IF	Citations
163	Z-Scheme Water Splitting Using Two Different Semiconductor Photocatalysts. ACS Catalysis, 2013, 3, 1486-1503.	11.2	1,005
164	Physicochemical properties and photocatalytic H2 evolution activity of Rh-doped La2Ti2O7 prepared by molten salt synthesis. Catalysis Science and Technology, 2013, 3, 2098.	4.1	32
165	Lanthanoid Oxide Layers on Rhodium-Loaded (Ga _{1â€"<i>x</i>>/i>} Csub>Ci>x>/sub>) (N _{1â€"<i>x</i>} O _{<i>x</i>}) Photocatalyst as a Modifier for Overall Water Splitting under Visible-Light Irradiation. Journal of Physical Chemistry C. 2013. 117. 14000-14006.	3.1	52
166	Sulfurization-Assisted Cobalt Deposition on Sm ₂ Fhotocatalyst for Water Oxidation under Visible Light Irradiation. Journal of Physical Chemistry C, 2013, 117, 376-382.	3.1	40
167	Polyol Synthesis of Size-Controlled Rh Nanoparticles and Their Application to Photocatalytic Overall Water Splitting under Visible Light. Journal of Physical Chemistry C, 2013, 117, 2467-2473.	3.1	78
168	Fabrication of Photoelectrodes from LaTiO2N Particles for Photoelectrochemical Water Splitting. Bulletin of the Chemical Society of Japan, 2013, 86, 540-546.	3.2	10
169	Oxidation of Water under Visibleâ€Light Irradiation over Modified BaTaO ₂ N Photocatalysts Promoted by Tungsten Species. Angewandte Chemie, 2013, 125, 6616-6619.	2.0	18
170	Modification of Tantalum (V) Nitride with zirconium oxide for photocatalytic hydrogen production under visible light irradiation. , 2012 , , .		0
171	Highly Dispersive Deposition of Pt Nanoparticles on CdS Nanostructures for Photocatalytic Hydrogen Evolution. Chemistry Letters, 2012, 41, 1325-1327.	1.3	9
172	Enhanced Water Oxidation on Ta ₃ N ₅ Photocatalysts by Modification with Alkaline Metal Salts. Journal of the American Chemical Society, 2012, 134, 19993-19996.	13.7	206
173	Modification of TaON with ZrO2 to improve photocatalytic hydrogen evolution activity under visible light: influence of preparation conditions on activity. Catalysis Science and Technology, 2012, 2, 818.	4.1	46
174	Structural and Band Gap Investigation of GaN:ZnO Heterojunction Solid Solution Photocatalyst Probed by Soft X-ray Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 7694-7700.	3.1	50
175	Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. Chemical Science, 2012, 3, 443-446.	7.4	246
176	Suppression of the water splitting back reaction on GaN:ZnO photocatalysts loaded with core/shell cocatalysts, investigated using a 1½-reactor. Journal of Catalysis, 2012, 292, 26-31.	6.2	45
177	Water Oxidation Using a Particulate BaZrO ₃ â€BaTaO ₂ N Solidâ€6olution Photocatalyst That Operates under a Wide Range of Visible Light. Angewandte Chemie - International Edition, 2012, 51, 9865-9869.	13.8	125
178	Preparation of calcium tantalum oxynitride from layered oxide precursors to improve photocatalytic activity for hydrogen evolution under visible light. Applied Catalysis B: Environmental, 2012, 128, 72-76.	20.2	29
179	Visible-light-driven nonsacrificial water oxidation over tungsten trioxide powder modified with two different cocatalysts. Energy and Environmental Science, 2012, 5, 8390.	30.8	153
180	Cobalt-Modified Porous Single-Crystalline LaTiO ₂ N for Highly Efficient Water Oxidation under Visible Light. Journal of the American Chemical Society, 2012, 134, 8348-8351.	13.7	382

#	Article	IF	Citations
181	Photocatalytic Water Splitting Using Modified GaN:ZnO Solid Solution under Visible Light: Long-Time Operation and Regeneration of Activity. Journal of the American Chemical Society, 2012, 134, 8254-8259.	13.7	296
182	Investigation of cocatalysts on silver-modified Sm2Ti2S2O5 photocatalyst for water reduction and oxidation under visible light irradiation. Catalysis Today, 2012, 185, 253-258.	4.4	21
183	Gas phase photocatalytic water splitting with Rh2â^'yCryO3/GaN:ZnO in $\hat{l}\frac{1}{4}$ -reactors. Energy and Environmental Science, 2011, 4, 2937.	30.8	71
184	Role and Function of Ruthenium Species as Promoters with TaON-Based Photocatalysts for Oxygen Evolution in Two-Step Water Splitting under Visible Light. Journal of Physical Chemistry C, 2011, 115, 3057-3064.	3.1	174
185	(Oxy)nitrides and Oxysulfides as Visible-Light-Driven Photocatalysts for Overall Water Splitting. Green Energy and Technology, 2011, , 487-529.	0.6	7
186	Oxynitride materials for solar water splitting. MRS Bulletin, 2011, 36, 25-31.	3.5	100
187	Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis. Energy and Environmental Science, 2011, 4, 675-678.	30.8	704
188	Preparation of a colloidal array of NaTaO3 nanoparticles via a confined space synthesis route and its photocatalytic application. Physical Chemistry Chemical Physics, 2011, 13, 2563.	2.8	52
189	Synthesis and Characterization of Semiconductor Tantalum Nitride Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 647-652.	3.1	30
190	A copper and chromium based nanoparticulate oxide as a noble-metal-free cocatalyst for photocatalytic water splitting. Chemical Science, 2011, 2, 1362.	7.4	42
191	Transient absorption study on photogenerated carrier dynamics in visible light responsive photocatalysts GaN:ZnO. , 2011, , .		7
192	Photocatalytic water splitting using semiconductor particles: History and recent developments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011, 12, 237-268.	11.6	1,027
193	Improvement of the photocatalytic hydrogen evolution activity of Sm2Ti2S2O5 under visible light by metal ion additives. Journal of Catalysis, 2011, 280, 1-7.	6.2	31
194	SrNbO ₂ N as a Water-Splitting Photoanode with a Wide Visible-Light Absorption Band. Journal of the American Chemical Society, 2011, 133, 12334-12337.	13.7	217
195	Surface Nanostructures in Photocatalysts for Visible-Light-Driven Water Splitting. Topics in Current Chemistry, 2011, 303, 95-119.	4.0	17
196	Synthesis and Photocatalytic Activity of Perovskite Niobium Oxynitrides with Wide Visibleâ€Light Absorption Bands. ChemSusChem, 2011, 4, 74-78.	6.8	216
197	Activation of BaTaO ₂ N Photocatalyst for Enhanced Nonâ€Sacrificial Hydrogen Evolution from Water under Visible Light by Forming a Solid Solution with BaZrO ₃ . Chemistry - A European Journal, 2011, 17, 14731-14735.	3.3	60
198	Ta3N5 photoanodes for water splitting prepared by sputtering. Thin Solid Films, 2011, 519, 2087-2092.	1.8	136

#	Article	IF	CITATIONS
199	Emission spectroscopy of divalent-cation-doped GaN photocatalysts. Journal of Applied Physics, 2011, 110, 113526.	2.5	1
200	Photocatalytic Water Splitting: Recent Progress and Future Challenges. Journal of Physical Chemistry Letters, 2010, 1, 2655-2661.	4.6	2,306
201	Preparation of Core–Shellâ€6tructured Nanoparticles (with a Nobleâ€Metal or Metal Oxide Core and a) Tj ETQq. European Journal, 2010, 16, 7750-7759.	l 1 0.7843 3.3	314 rgBT / 156
202	Inside Cover: Preparation of Core-Shell-Structured Nanoparticles (with a Noble-Metal or Metal Oxide) Tj ETQq0 0 0	rgBT /Ove 3.3	erlock 10 Tf . O
203	Synthesis of a Carbon Nitride Structure for Visible‣ight Catalysis by Copolymerization. Angewandte Chemie - International Edition, 2010, 49, 441-444.	13.8	1,312
204	Photocatalytic Overall Water Splitting Promoted by Two Different Cocatalysts for Hydrogen and Oxygen Evolution under Visible Light. Angewandte Chemie - International Edition, 2010, 49, 4096-4099.	13.8	356
205	Effect of TiCl4 treatment on the photoelectrochemical properties of LaTiO2N electrodes for water splitting under visible light. Thin Solid Films, 2010, 518, 5855-5859.	1.8	65
206	Isotopic and kinetic assessment of photocatalytic water splitting on Zn-added Ga2O3 photocatalyst loaded with Rh2â°yCryO3 cocatalyst. Chemical Physics Letters, 2010, 486, 144-146.	2.6	53
207	Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film. Electrochemistry Communications, 2010, 12, 851-853.	4.7	156
208	A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2010, , 271-275.		12
209	Highly active tantalum(v) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation. Journal of Materials Chemistry, 2010, 20, 4295.	6.7	122
210	Modified Ta ₃ N ₅ Powder as a Photocatalyst for O ₂ Evolution in a Two-Step Water Splitting System with an Iodate/Iodide Shuttle Redox Mediator under Visible Light. Langmuir, 2010, 26, 9161-9165.	3.5	189
211	Photocatalytic Hydrogen Evolution from Water Using Copper Gallium Sulfide under Visible-Light Irradiation. Journal of Physical Chemistry C, 2010, 114, 11215-11220.	3.1	126
212	Photoluminescence Spectroscopic and Computational Investigation of the Origin of the Visible Light Response of (Ga _{1â^'<i>x</i>} Zn _{<i>x</i>})(N _{1â^'<i>x</i>} O _{<i>x</i>}) Photocatalyst for Overall Water Splitting, Journal of Physical Chemistry C, 2010, 114, 15510-15515.	3.1	68
213	Modification of Sm <inf>2</inf> Ti <inf>2</inf> S <inf>2</inf> O <inf>5</inf> with two cocatalysts for remarkably enhanced hydrogen production from water using visible light., 2010,,.		0
214	Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light. Chemistry of Materials, 2010, 22, 612-623.	6.7	346
215	Efficient Nonsacrificial Water Splitting through Two-Step Photoexcitation by Visible Light using a Modified Oxynitride as a Hydrogen Evolution Photocatalyst. Journal of the American Chemical Society, 2010, 132, 5858-5868.	13.7	660
216	Simultaneous photodeposition of rhodium–chromiumnanoparticles on a semiconductor powder: structural characterization and application to photocatalytic overall water splitting. Energy and Environmental Science, 2010, 3, 471-478.	30.8	69

#	Article	IF	Citations
217	Experimental visualization of covalent bonds and structural disorder in a gallium zinc oxynitride photocatalyst (Galâ^xZnx)(Nlâ^xOx): origin of visible light absorption. Chemical Communications, 2010, 46, 2379.	4.1	55
218	Modification of oxysulfides with two nanoparticulate cocatalysts to achieve enhanced hydrogen production from water with visible light. Chemical Communications, 2010, 46, 7313.	4.1	46
219	The Effects of Starting Materials in the Synthesis of (Ga _{1â^'<i>x</i>} O _{<i>x</i>}) Solid Solution on Its Photocatalytic Activity for Overall Water Splitting under Visible Light. ChemSusChem, 2009, 2, 336-343.	6.8	46
220	A metal-free polymeric photocatalyst for hydrogen production from water under visibleÂlight. Nature Materials, 2009, 8, 76-80.	27.5	10,442
221	Effect of electrolyte addition on activity of (Ga1â^Zn)(N1â^O) photocatalyst for overall water splitting under visible light. Catalysis Today, 2009, 147, 173-178.	4.4	80
222	A precursor route to prepare tantalum (V) nitride nanoparticles with enhanced photocatalytic activity for hydrogen evolution under visible light. Applied Catalysis A: General, 2009, 370, 88-92.	4.3	74
223	Synthesis and photocatalytic activity of gallium–zinc–indium mixed oxynitride for hydrogen and oxygen evolution under visible light. Chemical Physics Letters, 2009, 470, 90-94.	2.6	59
224	Nanoparticulate precursor route to fine particles of TaON and ZrO2–TaON solid solution and their photocatalytic activity for hydrogen evolution under visible light. Applied Catalysis A: General, 2009, 357, 206-212.	4.3	71
225	Comparison of two- and three-layer restacked Dion–Jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution. Journal of Materials Chemistry, 2009, 19, 4813.	6.7	116
226	Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors. Accounts of Chemical Research, 2009, 42, 1966-1973.	15.6	957
227	Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light. Chemistry of Materials, 2009, 21, 4093-4095.	6.7	392
228	Calcium Niobate Nanosheets Prepared by the Polymerized Complex Method as Catalytic Materials for Photochemical Hydrogen Evolution. Chemistry of Materials, 2009, 21, 3611-3617.	6.7	89
229	Role and Function of Noble-Metal/Cr-Layer Core/Shell Structure Cocatalysts for Photocatalytic Overall Water Splitting Studied by Model Electrodes. Journal of Physical Chemistry C, 2009, 113, 10151-10157.	3.1	238
230	Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light. Journal of Physical Chemistry C, 2009, 113, 4940-4947.	3.1	690
231	Aspects of the Water Splitting Mechanism on (Ga _{1â^'<i>x</i>} O _{<i>x</i>}) (N _{1â^'<i>x</i>} O _{<i>x</i>}) Photocatalyst Modified with Rh _{2â^'<i>y</i>} Cr _{<i>y</i>} O ₃ Cocatalyst. Journal of Physical Chemistry C. 2009. 113. 21458-21466.	3.1	143
232	Highly dispersed noble-metal/chromia (core/shell) nanoparticles as efficient hydrogen evolution promoters for photocatalytic overall water splitting under visible light. Nanoscale, 2009, 1, 106.	5.6	105
233	Physicochemical Effects on Photocatalytic Water Oxidation by Titanium Fluorooxynitride Powder under Visible Light. Chemistry of Materials, 2009, 21, 2286-2291.	6.7	28
234	Enhancement of photocatalytic activity of zinc-germanium oxynitride solid solution for overall water splitting under visible irradiation. Dalton Transactions, 2009, , 10055.	3.3	44

#	Article	IF	Citations
235	Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. Journal of the American Chemical Society, 2009, 131, 1680-1681.	13.7	1,618
236	Photocatalytic Hydrogen Evolution from Hexaniobate Nanoscrolls and Calcium Niobate Nanosheets Sensitized by Ruthenium(II) Bipyridyl Complexes. Journal of Physical Chemistry C, 2009, 113, 7962-7969.	3.1	152
237	Photoresponse of GaN:ZnO Electrode on FTO under Visible Light Irradiation. Bulletin of the Chemical Society of Japan, 2009, 82, 401-407.	3.2	52
238	Enhancement of photocatalytic activity of $(Zn1+Ge)(N2O)$ for visible-light-driven overall water splitting by calcination under nitrogen. Chemical Physics Letters, 2008, 457, 134-136.	2.6	67
239	Effect of post-calcination on photocatalytic activity of (Ga1â^'Zn)(N1â^'O) solid solution for overall water splitting under visible light. Journal of Catalysis, 2008, 254, 198-204.	6.2	277
240	Niobium Oxide Nanoscrolls as Building Blocks for Dye-Sensitized Hydrogen Production from Water under Visible Light Irradiation. Chemistry of Materials, 2008, 20, 6770-6778.	6.7	173
241	Direct deposition of nanoparticulate rhodium–chromium mixed-oxides on a semiconductor powder by band-gap irradiation. Journal of Materials Chemistry, 2008, 18, 3539.	6.7	38
242	Photocatalytic Activity of (Ga ₁₋ <i>_x</i>)(N ₁₋ <i>_x</i>)for Visible-Light-Driven H ₂ and O ₂ Evolution in the Presence of Sacrificial Reagents. Journal of Physical Chemistry C, 2008, 112, 3447-3452.	>>x)
243	Surface Modification of TaON with Monoclinic ZrO2 to Produce a Composite Photocatalyst with Enhanced Hydrogen Evolution Activity under Visible Light. Bulletin of the Chemical Society of Japan, 2008, 81, 927-937.	3.2	140
244	Chapter 12 Nano-particulate photocatalysts for overall water splitting under visible light. Theoretical and Computational Chemistry, 2007, 18, 301-315.	0.4	8
245	Photocatalytic Overall Water Splitting on Gallium Nitride Powder. Bulletin of the Chemical Society of Japan, 2007, 80, 1004-1010.	3.2	98
246	Studies on TiN <i>></i> >O <i>_y</i> F <i>_z</i> as a Visible-Light-Responsive Photocatalyst. Journal of Physical Chemistry C, 2007, 111, 18264-18270.	3.1	105
247	Origin of Visible Light Absorption in GaN-Rich (Ga ₁ <td>sub1x<td>ıb88/i>O<i></i></td></td>	sub1x <td>ıb88/i>O<i></i></td>	ıb 88 /i>O <i></i>
248	Roles of Rh/Cr2O3(Core/Shell) Nanoparticles Photodeposited on Visible-Light-Responsive (Ga1-xZnx)(N1-xOx) Solid Solutions in Photocatalytic Overall Water Splitting. Journal of Physical Chemistry C, 2007, 111, 7554-7560.	3.1	230
249	Photocatalytic Properties of RuO2-Loaded \hat{l}^2 -Ge3N4for Overall Water Splitting. Journal of Physical Chemistry C, 2007, 111, 4749-4755.	3.1	93
250	Dependence of Activity and Stability of Germanium Nitride Powder for Photocatalytic Overall Water Splitting on Structural Properties. Chemistry of Materials, 2007, 19, 4092-4097.	6.7	54
251	New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light. Journal of Physical Chemistry C, 2007, 111, 7851-7861.	3.1	1,383
252	Preparation of (Ga1â^'xZnx) (N1â^'xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light. Applied Catalysis A: General, 2007, 327, 114-121.	4.3	73

#	Article	IF	CITATIONS
253	Development of Cocatalysts for Photocatalytic Overall Water Splitting on (Ga1â^'x Zn x)(N1â^'x O x) Solid Solution. Catalysis Surveys From Asia, 2007, 11, 145-157.	2.6	53
254	Efficient Overall Water Splitting under Visible-Light Irradiation on (Ga1-xZnx)(N1-xOx) Dispersed with Rhâ 'Cr Mixed-Oxide Nanoparticles:Â Effect of Reaction Conditions on Photocatalytic Activity. Journal of Physical Chemistry B, 2006, 110, 13107-13112.	2.6	218
255	Characterization of Rhâ^'Cr Mixed-Oxide Nanoparticles Dispersed on (Ga1-xZnx)(N1-xOx) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting. Journal of Physical Chemistry B, 2006, 110, 13753-13758.	2.6	180
256	Crystal Structure Analysis of (Ga _{0.90} 0.10) (N _{0.90} O _{0.10}) Oxynitride Photocatalyst. Materials Transactions, 2006, 47, 295-297.	1.2	24
257	Photocatalyst releasing hydrogen from water. Nature, 2006, 440, 295-295.	27.8	2,627
258	Improvement of photocatalytic activity of (Ga1â^'xZnx)(N1â^'xOx) solid solution for overall water splitting by co-loading Cr and another transition metal. Journal of Catalysis, 2006, 243, 303-308.	6.2	198
259	Noble-Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2006, 45, 7806-7809.	13.8	537
260	Overall water splitting using (oxy)nitride photocatalysts. Pure and Applied Chemistry, 2006, 78, 2267-2276.	1.9	76
261	Crystal structure and optical properties of (Galâ^'xZnx)(Nlâ^'xOx) oxynitride photocatalyst (x=0.13). Chemical Physics Letters, 2005, 416, 225-228.	2.6	79
262	RuO2-Loaded \hat{l}^2 -Ge3N4as a Non-Oxide Photocatalyst for Overall Water Splitting. Journal of the American Chemical Society, 2005, 127, 4150-4151.	13.7	388
263	Characterization of Ruthenium Oxide Nanocluster as a Cocatalyst with (Ga1-xZnx)(N1-xOx) for Photocatalytic Overall Water Splitting. Journal of Physical Chemistry B, 2005, 109, 21915-21921.	2.6	110
264	GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting. Journal of the American Chemical Society, 2005, 127, 8286-8287.	13.7	1,317
265	Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst:Â Relationship between Physical Properties and Photocatalytic Activity. Journal of Physical Chemistry B, 2005, 109, 20504-20510.	2.6	384