Janice A Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10742259/publications.pdf

Version: 2024-02-01

66343 82547 9,845 74 42 72 citations h-index g-index papers 74 74 74 11657 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Revascularization of ischemic tissues by PIGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nature Medicine, 2002, 8, 831-840.	30.7	1,008
2	Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer and Metastasis Reviews, 1993, 12, 303-324.	5.9	791
3	Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis, 2008, 11, 109-119.	7.2	513
4	Vascular Permeability Factor/Vascular Endothelial Growth Factor Induces Lymphangiogenesis as well as Angiogenesis. Journal of Experimental Medicine, 2002, 196, 1497-1506.	8.5	492
5	Antiangiogenic Properties of Gold Nanoparticles. Clinical Cancer Research, 2005, 11, 3530-3534.	7.0	426
6	Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell, 2006, 10, 159-170.	16.8	388
7	Heterogeneity of the Angiogenic Response Induced in Different Normal Adult Tissues by Vascular Permeability Factor/Vascular Endothelial Growth Factor. Laboratory Investigation, 2000, 80, 99-115.	3.7	384
8	Neutrophils Emigrate from Venules by a Transendothelial Cell Pathway in Response to FMLP. Journal of Experimental Medicine, 1998, 187, 903-915.	8.5	368
9	The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nature Medicine, 2001, 7, 569-574.	30.7	355
10	VEGF-A and the Induction of Pathological Angiogenesis. Annual Review of Pathology: Mechanisms of Disease, 2007, 2, 251-275.	22.4	342
11	Heterogeneity of the Tumor Vasculature. Seminars in Thrombosis and Hemostasis, 2010, 36, 321-331.	2.7	329
12	Anti-VEGF/VEGFR Therapy for Cancer: Reassessing the Target. Cancer Research, 2012, 72, 1909-1914.	0.9	323
13	The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. Journal of Leukocyte Biology, 1996, 59, 100-115.	3.3	229
14	Keratinocyte-Derived Vascular Permeability Factor (Vascular Endothelial Growth Factor) Is a Potent Mitogen for Dermal Microvascular Endothelial Cells. Journal of Investigative Dermatology, 1995, 105, 44-50.	0.7	215
15	Vascular Permeability Factor, Fibrin, and the Pathogenesis of Tumor Stroma Formation. Annals of the New York Academy of Sciences, 1992, 667, 101-111.	3.8	212
16	Glomeruloid Microvascular Proliferation Follows Adenoviral Vascular Permeability Factor/Vascular Endothelial Growth Factor-164 Gene Delivery. American Journal of Pathology, 2001, 158, 1145-1160.	3.8	199
17	Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition. Biochimica Et Biophysica Acta: Reviews on Cancer, 1989, 948, 305-326.	7.4	169
18	Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. Journal of Experimental Medicine, 2007, 204, 1431-1440.	8.5	167

#	Article	IF	Citations
19	Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell, 2005, 7, 251-261.	16.8	161
20	Pathways of Macromolecular Extravasation Across Microvascular Endothelium in Response to VPF/VEGF and Other Vasoactive Mediators. Microcirculation, 1999, 6, 23-44.	1.8	160
21	Orphan nuclear receptor TR3/Nur77 regulates VEGF-A–induced angiogenesis through its transcriptional activity. Journal of Experimental Medicine, 2006, 203, 719-729.	8.5	148
22	Vascular Hyperpermeability, Angiogenesis, and Stroma Generation. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006544-a006544.	6.2	136
23	Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets. Clinical and Experimental Metastasis, 2012, 29, 657-662.	3.3	130
24	VEGF-A164/165 and PIGF Roles in Angiogenesis and Arteriogenesis. Trends in Cardiovascular Medicine, 2003, 13, 169-175.	4.9	123
25	VEGF-A Induces Angiogenesis by Perturbing the Cathepsin-Cysteine Protease Inhibitor Balance in Venules, Causing Basement Membrane Degradation and Mother Vessel Formation. Cancer Research, 2009, 69, 4537-4544.	0.9	110
26	Ultrastructural Localization of the Vascular Permeability Factor/Vascular Endothelial Growth Factor (VPF/VEGF) Receptor-2 (FLK-1, KDR) in Normal Mouse Kidney and in the Hyperpermeable Vessels Induced by VPF/VEGF-expressing Tumors and Adenoviral Vectors. Journal of Histochemistry and Cytochemistry, 2000, 48, 545-555.	2.5	106
27	Ultrastructural studies define soluble macromolecular, particulate, and cellular transendothelial cell pathways in venules, lymphatic vessels, and tumor-associated microvessels in man and animals. Microscopy Research and Technique, 2002, 57, 289-326.	2.2	103
28	Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-fig, mouse and rat: many are transcellular pores. Journal of Physiology, 1997, 504, 747-761.	2.9	102
29	Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Laboratory Investigation, 2006, 86, 767-780.	3.7	101
30	Thrombospondinâ€1 modulates vascular endothelial growth factor activity at the receptor level. FASEB Journal, 2009, 23, 3368-3376.	0.5	101
31	Rapamycin Inhibition of the Akt/mTOR Pathway Blocks Select Stages of VEGF-A ¹⁶⁴ –Driven Angiogenesis, in Part by Blocking S6Kinase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1172-1178.	2.4	99
32	Vascular Permeability and Pathological Angiogenesis in Caveolin-1-Null Mice. American Journal of Pathology, 2009, 175, 1768-1776.	3.8	87
33	PGC- $1\hat{l}\pm$ Induces SPP1 to Activate Macrophages and Orchestrate Functional Angiogenesis in Skeletal Muscle. Circulation Research, 2014, 115, 504-517.	4.5	86
34	Different Pathways of Macromolecule Extravasation from Hyperpermeable Tumor Vessels. Microvascular Research, 2000, 59, 24-37.	2.5	84
35	The L6 Protein TM4SF1 Is Critical for Endothelial Cell Function and Tumor Angiogenesis. Cancer Research, 2009, 69, 3272-3277.	0.9	75
36	Down Syndrome Candidate Region 1 Isoform 1 Mediates Angiogenesis through the Calcineurin-NFAT Pathway. Molecular Cancer Research, 2006, 4, 811-820.	3.4	74

#	Article	IF	Citations
37	Tumor-Surrogate Blood Vessel Subtypes Exhibit Differential Susceptibility to Anti-VEGF Therapy. Cancer Research, 2011, 71, 7021-7028.	0.9	74
38	Ultrastructural Localization of Platelet Endothelial Cell Adhesion Molecule (PECAM-1, CD31) in Vascular Endothelium. Journal of Histochemistry and Cytochemistry, 2004, 52, 87-101.	2.5	61
39	Proteolytic Cleavage of Versican and Involvement of ADAMTS-1 in VEGF-A/VPF-Induced Pathological Angiogenesis. Journal of Histochemistry and Cytochemistry, 2011, 59, 463-473.	2.5	60
40	RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription. Nature Communications, 2013, 4, 2824.	12.8	51
41	A novel partial gravity ground-based analog for rats via quadrupedal unloading. Journal of Applied Physiology, 2018, 125, 175-182.	2.5	44
42	Penetration of Tumor Tissue by Antibodies and Other Immunoproteins. Annals of the New York Academy of Sciences, 1991, 618, 367-382.	3.8	43
43	Platelets Exit Venules by a Transcellular Pathway at Sites of F–Met Peptide–Induced Acute Inflammation in Guinea Pigs. International Archives of Allergy and Immunology, 1998, 116, 188-195.	2.1	43
44	Active Rac1 improves pathologic VEGF neovessel architecture and reduces vascular leak: mechanistic similarities with angiopoietin-1. Blood, 2011, 117, 1751-1760.	1.4	42
45	Lymphatic and Nonlymphatic Pathways of Peritoneal Absorption in Mice: Physiology versus Pathology. Blood Purification, 1992, 10, 148-162.	1.8	37
46	Retinoic Acid Selectively Inhibits the Vascular Permeabilizing Effect of VPF/VEGF, an Early Step in the Angiogenic Cascade. Microvascular Research, 2000, 60, 112-120.	2.5	36
47	Cdc42-mediated inhibition of GSK-3 \hat{l}^2 improves angio-architecture and lumen formation during VEGF-driven pathological angiogenesis. Microvascular Research, 2011, 81, 34-43.	2.5	36
48	Stromal-Based Signatures for the Classification of Gastric Cancer. Cancer Research, 2016, 76, 2573-2586.	0.9	35
49	Immunochemical determination of conformational equilibriums for fragments of the A.alpha. chain of fibrinogen. Biochemistry, 1982, 21, 1794-1806.	2.5	34
50	VEGF-A, cytoskeletal dynamics, and the pathological vascular phenotype. Experimental Cell Research, 2006, 312, 538-548.	2.6	30
51	Moderation of Calpain Activity Promotes Neovascular Integration and Lumen Formation during VEGF-Induced Pathological Angiogenesis. PLoS ONE, 2010, 5, e13612.	2.5	30
52	Estimating Myofiber Size With Electrical Impedance Myography: a Study In Amyotrophic Lateral Sclerosis MICE. Muscle and Nerve, 2018, 58, 713-717.	2.2	27
53	Electrical impedance myography detects age-related muscle change in mice. PLoS ONE, 2017, 12, e0185614.	2.5	25
54	Enhancement of the Functional Repertoire of the Rat Parietal Peritoneal MesotheliumIn Vivo: Directed Expression of the Anticoagulant and Antiinflammatory Molecule Thrombomodulin. Human Gene Therapy, 1998, 9, 1069-1081.	2.7	23

#	Article	IF	CITATIONS
55	Predicting myofiber size with electrical impedance myography: A study in immature mice. Muscle and Nerve, 2018, 58, 106-113.	2.2	23
56	Chapter 3 The Adenoviral Vector Angiogenesis/Lymphangiogenesis Assay. Methods in Enzymology, 2008, 444, 43-64.	1.0	19
57	Early Actions of Anti–Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor Drugs on Angiogenic Blood Vessels. American Journal of Pathology, 2017, 187, 2337-2347.	3.8	18
58	Electrical impedance myography for the detection of muscle inflammation induced by \hat{l} »-carrageenan. PLoS ONE, 2019, 14, e0223265.	2.5	17
59	Predicting myofiber crossâ€sectional area and triglyceride content with electrical impedance myography: A study in db/db mice. Muscle and Nerve, 2021, 63, 127-140.	2.2	17
60	Immunochemical determination of conformational equilibria for fragments of the B.beta. chain of fibrinogen. Biochemistry, 1985, 24, 882-887.	2.5	15
61	Estimating myofiber crossâ€sectional area and connective tissue deposition with electrical impedance myography: A study in <scp>D2</scp> â€ <i>mdx</i> mice. Muscle and Nerve, 2021, 63, 941-950.	2.2	15
62	Electrical impedance myography as a biomarker of myostatin inhibition with ActRIIB-mFc: a study in wild-type mice. Future Science OA, 2018, 4, FSO308.	1.9	14
63	Diffusionâ€controlled kinetics of protein domain coalescence: Effects of orientation, interdomain forces and hydration. Journal of Chemical Physics, 1980, 73, 5092-5106.	3.0	13
64	Using Electrical Impedance Myography as a Biomarker of Muscle Deconditioning in Rats Exposed to Micro- and Partial-Gravity Analogs. Frontiers in Physiology, 2020, 11, 557796.	2.8	13
65	Dose-dependent skeletal deficits due to varied reductions in mechanical loading in rats. Npj Microgravity, 2020, 6, 15.	3.7	12
66	Altered muscle electrical tissue properties in a mouse model of premature aging. Muscle and Nerve, 2019, 60, 801-810.	2.2	11
67	Partial Weight-Bearing in Female Rats: Proof of Concept in a Martian-Gravity Analog. Frontiers in Physiology, 2020, 11, 302.	2.8	10
68	Design and pilot testing of a 26â€gauge impedanceâ€electromyography needle in wildâ€ŧype and ALS mice. Muscle and Nerve, 2022, 65, 702-708.	2.2	6
69	Tumor Blood Vessels. , 2008, , 205-224.		5
70	Relationships between in vivo surface and ex vivo electrical impedance myography measurements in three different neuromuscular disorder mouse models. PLoS ONE, 2021, 16, e0259071.	2.5	3
71	Altered electrical properties in skeletal muscle of mice with glycogen storage disease type II. Scientific Reports, 2022, 12, 5327.	3.3	3
72	Characterization of the immunochemical reactivity of fibrinogen fragments by competitive radioimmunoassay: An improved method of analysis. The Protein Journal, 1991, 10, 629-635.	1.1	2

#	Article	IF	CITATIONS
73	Comparison of Quantitative Ultrasound Methods to Classify Dystrophic and Obese Models of Skeletal Muscle. Ultrasound in Medicine and Biology, 2022, 48, 1918-1932.	1.5	2
74	Orphan nuclear receptor TR3/Nur77 regulates VEGF-A–induced angiogenesis through its transcriptional activity. Journal of Cell Biology, 2006, 172, i15-i15.	5.2	0