
De-Maw Chuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10734347/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends in Neurosciences, 2009, 32, 591-601.	8.6	555
2	Histone Deacetylase Inhibitors Exhibit Anti-Inflammatory and Neuroprotective Effects in a Rat Permanent Ischemic Model of Stroke: Multiple Mechanisms of Action. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 892-901.	2.5	511
3	Long Term Lithium Treatment Suppresses p53 and Bax Expression but Increases Bcl-2 Expression. Journal of Biological Chemistry, 1999, 274, 6039-6042.	3.4	426
4	Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. Journal of Neurochemistry, 2004, 89, 1358-1367.	3.9	353
5	Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder. Pharmacological Reviews, 2013, 65, 105-142.	16.0	338
6	Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. Journal of Neurochemistry, 2002, 80, 589-597.	3.9	299
7	GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE, APOPTOSIS, AND NEURODEGENERATIVE DISEASES. Annual Review of Pharmacology and Toxicology, 2005, 45, 269-290.	9.4	271
8	The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. Journal of Neurochemistry, 2009, 110, 1226-1240.	3.9	270
9	Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. International Journal of Neuropsychopharmacology, 2008, 11, 1123.	2.1	254
10	Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats. NeuroReport, 1998, 9, 2081-2084.	1.2	252
11	Nuclear Factor $\hat{I}^{e}B$ Nuclear Translocation Upregulates c-Myc and p53 Expression during NMDA Receptor-Mediated Apoptosis in Rat Striatum. Journal of Neuroscience, 1999, 19, 4023-4033.	3.6	232
12	Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: An essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology, 2002, 43, 1173-1179.	4.1	230
13	Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disorders, 2002, 4, 129-136.	1.9	218
14	Valproic Acid Attenuates Blood–Brain Barrier Disruption in a Rat Model of Transient Focal Cerebral Ischemia: The Roles of HDAC and MMP-9 Inhibition. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 52-57.	4.3	201
15	Angiotensin II AT1 Receptor Blockade Ameliorates Brain Inflammation. Neuropsychopharmacology, 2011, 36, 857-870.	5.4	201
16	Synergistic Neuroprotective Effects of Lithium and Valproic Acid or Other Histone Deacetylase Inhibitors in Neurons: Roles of Glycogen Synthase Kinase-3 Inhibition. Journal of Neuroscience, 2008, 28, 2576-2588.	3.6	199
17	Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. , 2010, 128, 281-304.		196
18	Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6210-6215.	7.1	194

#	Article	IF	CITATIONS
19	Evidence that Glyceraldehydeâ€3â€Phosphate Dehydrogenase Is Involved in Ageâ€Induced Apoptosis in Mature Cerebellar Neurons in Culture. Journal of Neurochemistry, 1996, 66, 928-935.	3.9	181
20	Endogenous α-Synuclein Is Induced by Valproic Acid through Histone Deacetylase Inhibition and Participates in Neuroprotection against Glutamate-Induced Excitotoxicity. Journal of Neuroscience, 2006, 26, 7502-7512.	3.6	176
21	The Antiapoptotic Actions of Mood Stabilizers: Molecular Mechanisms and Therapeutic Potentials. Annals of the New York Academy of Sciences, 2005, 1053, 195-204.	3.8	171
22	Lithium neuroprotection: molecular mechanisms and clinical implications. Expert Reviews in Molecular Medicine, 2004, 6, 1-18.	3.9	169
23	Neuroprotective and Neurotrophic Actions of the Mood Stabilizer Lithium: Can It Be Used to Treat Neurodegenerative Diseases?. Critical Reviews in Neurobiology, 2004, 16, 83-90.	3.1	164
24	PET imaging with [11C]PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat. Neuroscience Letters, 2007, 411, 200-205.	2.1	158
25	Lithium Increases Transcription Factor Binding to APâ€1 and Cyclic AMPâ€Responsive Element in Cultured Neurons and Rat Brain. Journal of Neurochemistry, 1997, 69, 2336-2344.	3.9	157
26	Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Molecular Brain Research, 2005, 134, 162-169.	2.3	155
27	Nuclear Localization of Overexpressed Glyceraldehyde-3-Phosphate Dehydrogenase in Cultured Cerebellar Neurons Undergoing Apoptosis. Molecular Pharmacology, 1998, 53, 701-707.	2.3	144
28	Regulation of c-Jun N-terminal kinase, p38 kinase and AP-1 DNA binding in cultured brain neurons: roles in glutamate excitotoxicity and lithium neuroprotection. Journal of Neurochemistry, 2003, 84, 566-575.	3.9	138
29	Programmed cell death: Implications for neuropsychiatric disorders. Biological Psychiatry, 1994, 35, 946-956.	1.3	134
30	GSK-3 is a viable potential target for therapeutic intervention in bipolar disorder. Neuroscience and Biobehavioral Reviews, 2007, 31, 920-931.	6.1	134
31	GSK-3 as a Target for Lithium-Induced Neuroprotection Against Excitotoxicity in Neuronal Cultures and Animal Models of Ischemic Stroke. Frontiers in Molecular Neuroscience, 2011, 4, 15.	2.9	134
32	Lithium ameliorates phenotypic deficits in a mouse model of fragile X syndrome. International Journal of Neuropsychopharmacology, 2011, 14, 618-630.	2.1	128
33	Combined Treatment with the Mood Stabilizers Lithium and Valproate Produces Multiple Beneficial Effects in Transgenic Mouse Models of Huntington's Disease. Neuropsychopharmacology, 2011, 36, 2406-2421.	5.4	126
34	Valproic acid induces functional heatâ€shock protein 70 via Class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation. Journal of Neurochemistry, 2009, 111, 976-987.	3.9	124
35	Regulation and Function of Glycogen Synthase Kinase-3 Isoforms in Neuronal Survival. Journal of Biological Chemistry, 2007, 282, 3904-3917.	3.4	122
36	Mesenchymal Stem Cells Primed With Valproate and Lithium Robustly Migrate to Infarcted Regions and Facilitate Recovery in a Stroke Model. Stroke, 2011, 42, 2932-2939.	2.0	121

#	Article	IF	CITATIONS
37	Multiple mechanisms of serotonergic signal transduction. Life Sciences, 1987, 41, 1051-1064.	4.3	120
38	β-Amyloid peptide-induced death of PC 12 cells and cerebellar granule cell neurons is inhibited by long-term lithium treatment. European Journal of Pharmacology, 2000, 392, 117-123.	3.5	117
39	Lithium Ameliorates Neurodegeneration, Suppresses Neuroinflammation, and Improves Behavioral Performance in a Mouse Model of Traumatic Brain Injury. Journal of Neurotrauma, 2012, 29, 362-374.	3.4	117
40	Involvement of Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) and p53 in Neuronal Apoptosis: Evidence That GAPDH Is Upregulated by p53. Journal of Neuroscience, 1999, 19, 9654-9662.	3.6	115
41	Differential Roles of Glycogen Synthase Kinase-3 Isoforms in the Regulation of Transcriptional Activation. Journal of Biological Chemistry, 2006, 281, 30479-30484.	3.4	115
42	Nuclear Translocation of Glyceraldehyde-3-Phosphate Dehydrogenase Isoforms During Neuronal Apoptosis. Journal of Neurochemistry, 2008, 72, 925-932.	3.9	112
43	Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Letters, 2003, 542, 74-78.	2.8	111
44	Chronic Valproate Treatment Enhances Postischemic Angiogenesis and Promotes Functional Recovery in a Rat Model of Ischemic Stroke. Stroke, 2012, 43, 2430-2436.	2.0	97
45	Inhibition of Excessive Neuronal Apoptosis by the Calcium Antagonist Amlodipine and Antioxidants in Cerebellar Granule Cells. Journal of Neurochemistry, 2001, 72, 1448-1456.	3.9	93
46	Glyceraldehyde-3-phosphate dehydrogenase is over-expressed during apoptotic death of neuronal cultures and is recognized by a monoclonal antibody against amyloid plaques from Alzheimer's brain. Neuroscience Letters, 1995, 200, 133-136.	2.1	91
47	Neuronal Apoptosis Induced by Pharmacological Concentrations of 3-Hydroxykynurenine. Journal of Neurochemistry, 2001, 75, 81-90.	3.9	89
48	Lithium Reduces BACE1 Overexpression, Beta Amyloid Accumulation, and Spatial Learning Deficits in Mice with Traumatic Brain Injury. Journal of Neurotrauma, 2012, 29, 2342-2351.	3.4	89
49	A New Avenue for Lithium: Intervention in Traumatic Brain Injury. ACS Chemical Neuroscience, 2014, 5, 422-433.	3.5	88
50	Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of α-tubulin acetylation and FGF-21 up-regulation. Scientific Reports, 2016, 6, 19626.	3.3	84
51	Histone deacetylase inhibition alters histone methylation associated with heat shock protein 70 promoter modifications in astrocytes and neurons. Neuropharmacology, 2011, 60, 1109-1115.	4.1	81
52	Posttrauma cotreatment with lithium and valproate: reduction of lesion volume, attenuation of blood-brain barrier disruption, and improvement in motor coordination in mice with traumatic brain injury. Journal of Neurosurgery, 2013, 119, 766-773.	1.6	79
53	Elevated basal and thapsigargin-stimulated intracellular calcium of platelets and lymphocytes from bipolar affective disorder patients measured by a fluorometric microassay. Biological Psychiatry, 1999, 46, 247-255.	1.3	77
54	Potential Roles of HDAC Inhibitors in Mitigating Ischemia-induced Brain Damage and Facilitating Endogenous Regeneration and Recovery. Current Pharmaceutical Design, 2013, 19, 5105-5120.	1.9	76

#	Article	IF	CITATIONS
55	Lithium inhibits Smad3/4 transactivation via increased CREB activity induced by enhanced PKA and AKT signaling. Molecular and Cellular Neurosciences, 2008, 37, 440-453.	2.2	74
56	Lithium Upregulates Vascular Endothelial Growth Factor in Brain Endothelial Cells and Astrocytes. Stroke, 2009, 40, 652-655.	2.0	73
57	Overexpression of Glyceraldehyde-3-Phosphate Dehydrogenase Is Involved in Low K+-Induced Apoptosis but Not Necrosis of Cultured Cerebellar Granule Cells. Molecular Pharmacology, 1997, 51, 542-550.	2.3	71
58	Lithium reduces ischemia-induced hippocampal CA1 damage and behavioral deficits in gerbils. Brain Research, 2007, 1184, 270-276.	2.2	71
59	The Mood Stabilizers Valproic Acid and Lithium Enhance Mesenchymal Stem Cell Migration via Distinct Mechanisms. Neuropsychopharmacology, 2010, 35, 2225-2237.	5.4	71
60	Homologous Desensitization of Muscarinic Cholinergic, Histaminergic, Adrenergic, and Serotonergic Receptors Coupled to Phospholipase C in Cerebellar Granule Cells. Journal of Neurochemistry, 1989, 52, 598-603.	3.9	66
61	Lithiumâ€induced inhibition of Src tyrosine kinase in rat cerebral cortical neurons: a role in neuroprotection against <i>N</i> â€methylâ€ <scp>D</scp> â€aspartate receptorâ€mediated excitotoxicity. FEBS Letters, 2003, 538, 145-148.	2.8	64
62	Overexpression and nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase in a transgenic mouse model of Huntington's disease. Molecular and Cellular Neurosciences, 2003, 22, 285-297.	2.2	62
63	In Search of the Holy Grail for the Treatment of Neurodegenerative Disorders: Has a Simple Cation Been Overlooked?. Biological Psychiatry, 2007, 62, 4-6.	1.3	62
64	Glutamate-Modulating Drugs as a Potential Therapeutic Strategy in Obsessive-Compulsive Disorder. Current Neuropharmacology, 2017, 15, 977-995.	2.9	59
65	Post-insult valproic acid-regulated microRNAs: potential targets for cerebral ischemia. American Journal of Translational Research (discontinued), 2012, 4, 316-32.	0.0	59
66	Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease. Experimental Neurology, 2016, 281, 81-92.	4.1	57
67	Expression and Agonist-Induced Down-Regulation of mRNAs of m2- and m3-Muscarinic Acetylcholine Receptors in Cultured Cerebellar Granule Cells. Journal of Neurochemistry, 1991, 56, 716-719.	3.9	56
68	Safety and efficacy of valproic acid treatment in SCA3/MJD patients. Parkinsonism and Related Disorders, 2016, 26, 55-61.	2.2	56
69	Differential down-regulation of β1- and β2-adrenergic receptor mRNA in C6 glioma cells. Biochemical and Biophysical Research Communications, 1990, 170, 46-52.	2.1	53
70	Genetic disruption of ankyrin-G in adult mouse forebrain causes cortical synapse alteration and behavior reminiscent of bipolar disorder. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10479-10484.	7.1	52
71	Comparative studies of phosphoinositide hydrolysis induced by endothelin-related peptides in cultured cerebellar astrocytes, C6-glioma and cerebellar granule cells. Biochemical and Biophysical Research Communications, 1990, 168, 512-519.	2.1	51
72	Antidepressant mechanism of ketamine: perspective from preclinical studies. Frontiers in Neuroscience, 2015, 9, 249.	2.8	51

#	Article	IF	CITATIONS
73	HDAC inhibitors mitigate ischemia-induced oligodendrocyte damage: potential roles of oligodendrogenesis, VECF, and anti-inflammation. American Journal of Translational Research (discontinued), 2014, 6, 206-23.	0.0	49
74	The Mood Stabilizer Lithium Potentiates the Antidepressant-Like Effects and Ameliorates Oxidative Stress Induced by Acute Ketamine in a Mouse Model of Stress. International Journal of Neuropsychopharmacology, 2015, 18, .	2.1	47
75	Serotonergic, adrenergic and histaminergic receptors coupled to phospholipase C in cultured cerebellar granule cells of rats. Biochemical Pharmacology, 1987, 36, 2353-2358.	4.4	46
76	A role for GAPDH in apoptosis and neurodegeneration. Nature Medicine, 1996, 2, 609-610.	30.7	45
77	Beneficial effects of mood stabilizers lithium, valproate and lamotrigine in experimental stroke models. Acta Pharmacologica Sinica, 2011, 32, 1433-1445.	6.1	45
78	Lentivirally mediated GSK-3β silencing in the hippocampal dentate gyrus induces antidepressant-like effects in stressed mice. International Journal of Neuropsychopharmacology, 2011, 14, 711-717.	2.1	44
79	Transplantation of Mesenchymal Stem Cells Overexpressing Fibroblast Growth Factor 21 Facilitates Cognitive Recovery and Enhances Neurogenesis in a Mouse Model of Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 14-26.	3.4	42
80	Preclinical and Clinical Investigations of Mood Stabilizers for Huntington's Disease: What Have We Learned?. International Journal of Biological Sciences, 2014, 10, 1024-1038.	6.4	41
81	Effects of Depolarization and NMDA Antagonists on the Survival of Cerebellar Granule Cells: A Pivotal Role for Protein Kinase C Isoforms. Journal of Neurochemistry, 1997, 68, 2577-2586.	3.9	40
82	Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X ₄ receptor expression in activated microglia. Journal of Neuroscience Research, 2013, 91, 694-705.	2.9	40
83	Functional MRI of Delayed Chronic Lithium Treatment in Rat Focal Cerebral Ischemia. Stroke, 2008, 39, 439-447.	2.0	37
84	Carbachol-induced accumulation of inositol-1-phosphate in neurohybridoma NCB-20 cells: Effects of lithium and phorbol esters. Biochemical and Biophysical Research Communications, 1986, 136, 622-629.	2.1	35
85	Characterization of Bradykinin-Induced Phosphoinositide Turnover in Neurohybrid NCB-20 Cells. Journal of Neurochemistry, 1988, 51, 505-513.	3.9	35
86	Carbamazepine induction of apoptosis in cultured cerebellar neurons: effects ofN-methyl-d-aspartate, aurintricarboxylic acid and cycloheximide. Brain Research, 1995, 703, 63-71.	2.2	35
87	Potent neuroprotective effects of novel structural derivatives of valproic acid: Potential roles of HDAC inhibition and HSP70 induction. Neuroscience Letters, 2010, 476, 127-132.	2.1	35
88	Neuroprotective effects of the mood stabilizer lamotrigine against glutamate excitotoxicity: roles of chromatin remodelling and Bcl-2 induction. International Journal of Neuropsychopharmacology, 2013, 16, 607-620.	2.1	35
89	Neuroprotective action of lithium in disorders of the central nervous system. Journal of Central South University (Medical Sciences), 2011, 36, 461-76.	0.1	35
90	Differences in the regulatory adaptation of the 5HT2 recognition sites labelled by 3H-mianserin or 3H-ketanserin. Neuropharmacology, 1983, 22, 123-126.	4.1	34

#	Article	IF	CITATIONS
91	Modulation of calcium uptake and D-aspartate release by GABAB receptors in cultured cerebellar granule cells. European Journal of Pharmacology, 1987, 141, 401-408.	3.5	34
92	Valproic Acid and Other HDAC Inhibitors Upregulate FGF21 Gene Expression and Promote Process Elongation in Glia by Inhibiting HDAC2 and 3. International Journal of Neuropsychopharmacology, 2016, 19, pyw035.	2.1	33
93	Mood stabilizer-regulated miRNAs in neuropsychiatric and neurodegenerative diseases: identifying associations and functions. American Journal of Translational Research (discontinued), 2013, 5, 450-64.	0.0	29
94	Long-term biphasic effects of lithium treatment on phospholipase C-coupled m3-muscarinic acetylcholine receptors in cultured cerebellar granule cells. Neurochemistry International, 1993, 22, 395-403.	3.8	28
95	Nuclear factor.κB-dependent cyclin D1 induction and DNA replication associated with N-methyl-D-aspartate receptor-mediated apoptosis in rat striatum. Journal of Neuroscience Research, 2007, 85, 1295-1309.	2.9	28
96	CSK3β negatively regulates TRAX, a scaffold protein implicated in mental disorders, for NHEJ-mediated DNA repair in neurons. Molecular Psychiatry, 2018, 23, 2375-2390.	7.9	28
97	Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity. Neurobiology of Disease, 2005, 20, 562-573.	4.4	27
98	Bax inhibitor 1, a modulator of calcium homeostasis, confers affective resilience. Brain Research, 2011, 1403, 19-27.	2.2	27
99	Endothelin-1 stimulates the release of preloaded [3H]D-aspartate from cultured cerebellar granule cells. Biochemical and Biophysical Research Communications, 1990, 167, 593-599.	2.1	23
100	Extracellular ATP stimulates inositol phospholipid turnover and calcium influx in C6 glioma cells. Neurochemical Research, 1993, 18, 681-687.	3.3	23
101	Internalization of β-adrenergic receptor binding sites: Involvements of lysosomal enzymes. Biochemical and Biophysical Research Communications, 1982, 105, 1466-1472.	2.1	19
102	Carbamazepine-induced neurotoxicity and its prevention by NMDA in cultured cerebellar granule cells. Neuroscience Letters, 1992, 135, 159-162.	2.1	19
103	Neurotrophin Protection Against Toxicity Induced by Low Potassium and Nitroprusside in Cultured Cerebellar Granule Neurons. Journal of Neurochemistry, 1997, 68, 68-77.	3.9	18
104	Differential Regulation by Butyrate and Dibutyryl Cyclic AMP of ?-Opioid, ?2-Adrenergic, and Muscarinic Cholinergic Receptors in NCB-20 Cells. Journal of Neurochemistry, 1988, 50, 17-26.	3.9	17
105	Regulation of bradykinin-induced phosphoinositide turnover in cultured cerebellar astrocytes: possible role of protein kinase C. Neurochemistry International, 1992, 21, 573-579.	3.8	17
106	ONO-1603, a potential antidementia drug, shows neuroprotective effects and increases m3-muscarinic receptor mRNA levels in differentiating rat cerebellar granule neurons. Neuroscience Letters, 1996, 214, 151-154.	2.1	17
107	?-adrenergic receptor internalization and processing: role of transglutaminase and lysosomes. Molecular and Cellular Biochemistry, 1984, 58, 79-89.	3.1	15
108	Regulation of βâ€Adrenergic Receptor mRNA in Rat C ₆ Glioma Cells Is Sensitive to the State of Microtubule Assembly. Journal of Neurochemistry, 1994, 62, 421-430.	3.9	15

#	Article	IF	CITATIONS
109	Rebound increase of basal cAMP level in NG108-15 cells during chronic morphine treatment: Effects of naloxone and chloramphenicol. Life Sciences, 1989, 44, 1107-1116.	4.3	12
110	Overexpression of fibroblast growth factorâ€21 (FGFâ€21) protects mesenchymal stem cells against caspaseâ€dependent apoptosis induced by oxidative stress and inflammation. Cell Biology International, 2020, 44, 2163-2169.	3.0	12
111	Inhibition of Excitatory Amino Acid-Induced Phosphoinositide Hydrolysis as a Possible Mechanism of Nitroprusside Neurotoxicity. Journal of Neurochemistry, 2002, 66, 346-354.	3.9	11
112	Lithium protection from glutamate excitotoxicity: therapeutic implications. Clinical Neuroscience Research, 2004, 4, 243-252.	0.8	11
113	CABA pretreatment enhances glutamate mediated phosphoinositide hydrolysis in neurons. European Journal of Pharmacology, 1988, 158, 179-180.	3.5	10
114	5-Hydroxytryptamine Uptake and Imipramine Binding Sites in Neurotumor NCB-20 Cells. Journal of Neurochemistry, 1985, 45, 920-925.	3.9	9
115	Characterization of two distinct 5-HT receptors coupled to adenylate cyclase activation and ion current generation in NCB-20 cells. Neuroscience Letters, 1990, 108, 149-154.	2.1	9
116	Chronic haloperidol treatment attenuates receptor-mediated phosphoinositide turnover in rat brain slices. Neuroscience Letters, 1991, 129, 81-85.	2.1	9
117	Effects of chronic nicotine and haloperidol administration on muscarinic receptor-mediated phosphoinositide turnover in rat brain slices. Psychopharmacology, 1992, 109, 248-250.	3.1	9
118	The mitochondrial hypothesis of bipolar disorder. Bipolar Disorders, 2000, 2, 145-147.	1.9	9
119	Maitotoxin Induces Phosphoinositide Turnover and Modulates Glutamatergic and Muscarinic Cholinergic Receptor Function in Cultured Cerebellar Neurons. Journal of Neurochemistry, 1990, 55, 1563-1568.	3.9	8
120	m2- and m3-muscarinic acetylcholine receptor mRNAs have different responses to microtubule-affecting drugs. Molecular and Cellular Neurosciences, 1991, 2, 315-319.	2.2	8
121	Endothelin-1 increases the levels of mRNA and protein of muscarinic acetylcholine receptors and c-fosmRNA in cerebellar granule cells. FEBS Letters, 1994, 348, 263-267.	2.8	8
122	Tryptamine Induces Phosphoinositide Turnover and Modulates Adrenergic and Muscarinic Cholinergic Receptor Function in Cultured Cerebellar Granule Cells. Journal of Neurochemistry, 2002, 63, 2080-2085.	3.9	8
123	Tetrahydroaminoacridine increases m3-, but not m2-, muscarinic acetylcholine receptor mRNA levels in differentiating cerebellar granule cells. Neuroscience Letters, 1993, 163, 27-30.	2.1	7
124	Roles of Glycogen Synthase Kinase-3 in Alzheimer's Disease: From Pathology toÂTreatment Target. Journal of Experimental and Clinical Medicine, 2012, 4, 135-139.	0.2	7
125	Comparison of the butyrate effects on neurotransmitter receptors in neurohybrids NG 108-15 and NCB-20 cells. Life Sciences, 1987, 41, 1133-1139.	4.3	6
126	Autoradiographic demonstration of an increase in muscarinic cholinergic receptors in cerebellar granule cells treated with tetrahydroaminoacridine. Neuroscience Letters, 1993, 151, 45-47.	2.1	6

#	Article	IF	CITATIONS
127	The Antiapoptotic Actions of Mood Stabilizers. Annals of the New York Academy of Sciences, 2005, 1053, 195-204.	3.8	6
128	Role of microtubule structure in the maintenance of m3-muscarinic acetylcholine receptor rnRNA levels. Molecular and Cellular Neurosciences, 1991, 2, 123-129.	2.2	5
129	Effect of chronic haloperidol treatment on dopamine-induced inositol phosphate formation in rat brain slices. Neurochemical Research, 1994, 19, 673-678.	3.3	5
130	Regulation by batrachotoxin, veratridine, and monensin of basal and carbachol-induced phosphoinositide hydrolysis in neurohybrid NCB-20 cells. Neurochemical Research, 1990, 15, 695-704.	3.3	4
131	Potentiation by Ca2+ ionophores and inhibition by extracellular KCl of endothelin-induced phosphoinositide turnover in C6 glioma cells. Neurochemistry International, 1992, 21, 293-301.	3.8	4
132	Effect of cocaine, lidocaine kindling and carbamazepine on batrachotoxin-induced phosphoinositide hydrolysis in rat brain slices. Brain Research, 1993, 614, 185-190.	2.2	4
133	Changes in immunohistochemical properties of beta-adrenergic receptors in frog erythrocytes by isoproterenol-induced desensitization. Life Sciences, 1988, 42, 321-328.	4.3	3
134	Differential effects of butyrate and dibutyryl cAMP on mRNA levels of muscarinic acetylcholine receptor subtypes expressed in neurohybrid cell lines. Neuroscience Letters, 1996, 212, 49-52.	2.1	3
135	Recognition Sites for Antidepressant Drugs. , 1984, , 307-330.		3
136	Post-insult valproate treatment potentially improved functional recovery in patients with acute middle cerebral artery infarction. American Journal of Translational Research (discontinued), 2014, 6, 820-30.	0.0	3
137	Antagonists have a greater selectivity for muscarinic receptor subtypes in intact cerebellar granule cells than in membranes. Brain Research, 1996, 713, 29-35.	2.2	2
138	Longâ€Term GABA Treatment Elicits Supersensitivity of Quisqualateâ€Preferring Metabotropic Glutamate Receptor in Cultured Rat Cerebellar Neurons. Journal of Neurochemistry, 1993, 61, 430-435.	3.9	2
139	ETHANOL INDUCES SUBTYPE-SPECIFIC UP-REGULATION OF MUSCARINIC ACETYLCHOLINE RECEPTOR mRNA IN NEUROHYBRID CELL LINES. Life Sciences, 1997, 62, 389-396.	4.3	1
140	Neuroprotection against Apoptosis. , 2003, , 145-154.		1
141	l²-adrenergic receptor internalization and processing: role of transglutaminase and lysosomes. , 1984, , 79-89.		0
142	Preventing the Sequelae of Concussions and Traumatic Brain Injury. Journal of Neurology & Stroke, 2014, 2, .	0.1	0