George Gruner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10734021/publications.pdf

Version: 2024-02-01

76326 123424 10,404 64 40 61 citations h-index g-index papers 65 65 65 12888 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Printed electronics, wearable technology. Translational Materials Research, 2016, 3, 030101.	1.2	4
2	Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes. Chemistry Central Journal, 2013, 7, 60.	2.6	54
3	Photoinduced Charge Transfer within Polyaniline-Encapsulated Quantum Dots Decorated on Graphene. ACS Applied Materials & Samp; Interfaces, 2013, 5, 8105-8110.	8.0	36
4	Recent advancements of graphene in biomedicine. Journal of Materials Chemistry B, 2013, 1, 2542.	5.8	176
5	Chloride ion sensors based on low-dimensional α-MnO2–Co3O4 nanoparticles fabricated glassy carbon electrodes by simple l–V technique. Electrochimica Acta, 2013, 103, 143-150.	5.2	73
6	Nanonet as a scaffold with targeted functionalities. Journal of Materials Chemistry, 2012, 22, 24983.	6.7	17
7	Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 2010, 110, 5790-5844.	47.7	889
8	Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions. Nanotechnology, 2010, 21, 155202.	2.6	78
9	Particle Size Effect of Silver Nanoparticles Decorated Single Walled Carbon Nanotube Electrode for Supercapacitors. Journal of the Electrochemical Society, 2010, 157, A179.	2.9	103
10	Fully bendable polymer light emitting devices with carbon nanotubes as cathode and anode. Applied Physics Letters, 2009, 95, .	3.3	59
11	Highly stretchable, conductive, and transparent nanotube thin films. Applied Physics Letters, 2009, 94,	3.3	155
12	Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes. Nano Letters, 2009, 9, 1872-1876.	9.1	1,440
13	Infrared transparent carbon nanotube thin films. Applied Physics Letters, 2009, 94, 081103.	3.3	98
14	Charge Transport in Interpenetrating Networks of Semiconducting and Metallic Carbon Nanotubes. Nano Letters, 2009, 9, 1866-1871.	9.1	151
15	A method of fabricating highly transparent and conductive interpenetrated carbon nanotube–parylene networks. Nanotechnology, 2009, 20, 465304.	2.6	16
16	Surface-Modified Nanotube Anodes for High Performance Organic Light-Emitting Diode. ACS Nano, 2009, 3, 2258-2264.	14.6	130
17	Solution Cast Films of Carbon Nanotubes for Transparent Conductors and Thin Film Transistors. Kluwer International Series in Electronic Materials: Science and Technology, 2009, , 297-328.	0.5	5
18	Pyrenecyclodextrinâ€Decorated Singleâ€Walled Carbon Nanotube Fieldâ€Effect Transistors as Chemical Sensors. Advanced Materials, 2008, 20, 1910-1915.	21.0	98

#	Article	IF	CITATIONS
19	A Tunable Photosensor. Journal of the American Chemical Society, 2008, 130, 16996-17003.	13.7	57
20	Indium tin oxide modified transparent nanotube thin films as effective anodes for flexible organic light-emitting diodes. Applied Physics Letters, 2008, 93, .	3.3	48
21	Frequency- and electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density. Physical Review B, 2008, 77, .	3.2	37
22	Modification of single-walled carbon nanotube electrodes by layer-by-layer assembly for electrochromic devices. Journal of Applied Physics, 2008, 103, .	2.5	11
23	37.4: <i>Lateâ€News Paper</i> : Integration of Carbon Nanotube Transparent Electrodes into Display Applications. Digest of Technical Papers SID International Symposium, 2008, 39, 537-540.	0.3	18
24	Electrowetting devices with transparent single-walled carbon nanotube electrodes. Applied Physics Letters, 2007, 90, 093124.	3.3	52
25	Patternable transparent carbon nanotube films for electrochromic devices. Journal of Applied Physics, 2007, 101, 016102.	2.5	60
26	Direct Electronic Detection of Prostate-Specific Antigen in Serum. Small, 2007, 3, 758-762.	10.0	35
27	Carbon Nanonets Spark New Electronics. Scientific American, 2007, 296, 76-83.	1.0	41
28	Microwave shielding of transparent and conducting single-walled carbon nanotube films. Applied Physics Letters, 2007, 90, 183119.	3.3	155
29	Electronic properties of carbon nanotube/fabric composites. Current Applied Physics, 2007, 7, 60-63.	2.4	57
30	Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Applied Physics Letters, 2006, 89, 133112.	3.3	286
31	Organic Light-Emitting Diodes Having Carbon Nanotube Anodes. Nano Letters, 2006, 6, 2472-2477.	9.1	331
32	A method of printing carbon nanotube thin films. Applied Physics Letters, 2006, 88, 123109.	3.3	384
33	Bioinspired Detection of Light Using a Porphyrin-Sensitized Single-Wall Nanotube Field Effect Transistor. Nano Letters, 2006, 6, 2031-2036.	9.1	211
34	Organic solar cells with carbon nanotube network electrodes. Applied Physics Letters, 2006, 88, 233506.	3.3	936
35	Source of 1â•f noise in carbon nanotube devices. Journal of Applied Physics, 2006, 100, 013505.	2.5	26
36	Carbon nanotube transistors for biosensing applications. , 2005, , .		2

#	Article	IF	Citations
37	Two-Dimensional Carbon Nanotube Networks: A Transparent Electronic Material. Materials Research Society Symposia Proceedings, 2005, 905, 1.	0.1	2
38	Nanotube Optoelectronic Memory Devices. Nano Letters, 2004, 4, 1587-1591.	9.1	197
39	Electronic Detection of the Enzymatic Degradation of Starch. Organic Letters, 2004, 6, 2089-2092.	4.6	67
40	Detecting biomolecules with nanoscale active electronic devices. , 2004, , .		0
41	Flexible Nanotube Electronics. Nano Letters, 2003, 3, 1353-1355.	9.1	319
42	Interaction of Aromatic Compounds with Carbon Nanotubes:Â Correlation to the Hammett Parameter of the Substituent and Measured Carbon Nanotube FET Response. Nano Letters, 2003, 3, 1421-1423.	9.1	204
43	Electronic Detection of Specific Protein Binding Using Nanotube FET Devices. Nano Letters, 2003, 3, 459-463.	9.1	759
44	Influence of Mobile Ions on Nanotube Based FET Devices. Nano Letters, 2003, 3, 639-641.	9.1	113
45	Short-channel effects in contact-passivated nanotube chemical sensors. Applied Physics Letters, 2003, 83, 3821-3823.	3.3	130
46	Charge Transfer from Ammonia Physisorbed on Nanotubes. Physical Review Letters, 2003, 91, 218301.	7.8	178
47	Measurements of the Complex Conductivity of NbxSi1â^'xAlloys on the Insulating Side of the Metal-Insulator Transition. Physical Review Letters, 2001, 87, 116602.	7.8	20
48	Temperature-Frequency Scaling in Amorphous Niobium-Silicon near the Metal-Insulator Transition. Physical Review Letters, 1998, 80, 4261-4264.	7.8	26
49	Waveguide configuration optical spectroscopy. , 1998, , 111-168.		3
50	Frequency Dependent Conductivity in Organic Superconductors. Molecular Crystals and Liquid Crystals, 1996, 284, 107-119.	0.3	4
51	Microwave cavity perturbation technique: Part I: Principles. Journal of Infrared, Millimeter and Terahertz Waves, 1993, 14, 2423-2457.	0.6	219
52	Microwave cavity perturbation technique: Part II: Experimental scheme. Journal of Infrared, Millimeter and Terahertz Waves, 1993, 14, 2459-2487.	0.6	104
53	Microwave cavity perturbation technique: Part III: Applications. Journal of Infrared, Millimeter and Terahertz Waves, 1993, 14, 2489-2517.	0.6	84
54	Power-law temperature dependence of the electrodynamic properties in orientedYBa2Cu3O7â^ÎandY2Ba4Cu8O16â^Îfilms. Physical Review B, 1989, 39, 785-788.	3.2	38

#	Article	IF	CITATIONS
55	Preparation of superconducting Tlâ€Caâ€Baâ€Cu thin films by chemical deposition. Applied Physics Letters, 1989, 55, 188-190.	3.3	47
56	Millimeter-wave surface resistance measurements in highly orientedYBa2Cu3O7â^Îthin films. Physical Review B, 1988, 37, 9726-9729.	3.2	89
57	Weakly coupled grain model of highâ€frequency losses in highTcsuperconducting thin films. Applied Physics Letters, 1988, 53, 1343-1345.	3.3	236
58	The Dynamics of Charge Density Waves. NATO ASI Series Series B: Physics, 1987, , 347-368.	0.2	4
59	Harmonic and subharmonic shapiro steps in orthorhombic Tas3. Solid State Communications, 1985, 54, 23-26.	1.9	19
60	Subharmonic shapiro steps, devil's staircase, and synchronization in RF-driven CDW conductors. Lecture Notes in Physics, 1985, , 318-322.	0.7	2
61	Charge density wave transport in linear chain compounds. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1984, 126, 400-408.	0.9	2
62	Subharmonic Shapiro Steps and Devil's-Staircase Behavior in Driven Charge-Density-Wave Systems. Physical Review Letters, 1984, 52, 2277-2280.	7.8	121
63	Volume Dependence of Current Oscillations in NbSe3: A Finite-Size Effect. Physical Review Letters, 1983, 51, 2206-2209.	7.8	76
64	Charge Density Wave Dynamics in NbSe3 and TaS3. Molecular Crystals and Liquid Crystals, 1982, 81, 17-29.	0.8	18