
## Patrick Wolf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10728778/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Improving the Performance of Supported Ionic Liquid Phase Catalysts for the Ultra-Low-Temperature<br>Water Gas Shift Reaction Using Organic Salt Additives. ACS Catalysis, 2022, 12, 5661-5672.                                                                    | 11.2 | 7         |
| 2  | Ultra-low temperature water–gas shift reaction catalyzed by homogeneous Ru-complexes in a<br>membrane reactor – membrane development and proof of concept. Catalysis Science and Technology,<br>2021, 11, 1558-1570.                                               | 4.1  | 9         |
| 3  | Materials with Hierarchical Porosity Enhance the Stability of Infused Ionic Liquid Films. ACS Omega, 2021, 6, 20956-20965.                                                                                                                                         | 3.5  | 5         |
| 4  | Tailored monolith supports for improved ultra-low temperature water-gas shift reaction. Reaction Chemistry and Engineering, 2021, 6, 2114-2124.                                                                                                                    | 3.7  | 8         |
| 5  | Cu carbonyls enhance the performance of Ru-based SILP water–gas shift catalysts: a combined <i>in<br/>situ</i> DRIFTS and DFT study. Catalysis Science and Technology, 2020, 10, 252-262.                                                                          | 4.1  | 7         |
| 6  | Enhanced CH <sub>3</sub> OH selectivity in CO <sub>2</sub> hydrogenation using Cu-based catalysts<br>generated <i>via</i> SOMC from Ga <sup>III</sup> single-sites. Chemical Science, 2020, 11, 7593-7598.                                                         | 7.4  | 30        |
| 7  | Computational description of key spectroscopic features of zeolite SSZ-13. Physical Chemistry<br>Chemical Physics, 2019, 21, 19065-19075.                                                                                                                          | 2.8  | 11        |
| 8  | Improving the performance of supported ionic liquid phase (SILP) catalysts for the<br>ultra-low-temperature water–gas shift reaction using metal salt additives. Green Chemistry, 2019, 21,<br>5008-5018.                                                          | 9.0  | 16        |
| 9  | CO <sub>2</sub> Hydrogenation on Cu/Al <sub>2</sub> O <sub>3</sub> : Role of the Metal/Support<br>Interface in Driving Activity and Selectivity of a Bifunctional Catalyst. Angewandte Chemie, 2019, 131,<br>14127-14134.                                          | 2.0  | 21        |
| 10 | CO <sub>2</sub> Hydrogenation on Cu/Al <sub>2</sub> O <sub>3</sub> : Role of the Metal/Support<br>Interface in Driving Activity and Selectivity of a Bifunctional Catalyst. Angewandte Chemie -<br>International Edition, 2019, 58, 13989-13996.                   | 13.8 | 112       |
| 11 | Zr(IV) surface sites determine CH3OH formation rate on Cu/ZrO2/SiO2 - CO2 hydrogenation catalysts.<br>Chinese Journal of Catalysis, 2019, 40, 1741-1748.                                                                                                           | 14.0 | 22        |
| 12 | UV–Vis and Photoluminescence Spectroscopy to Understand the Coordination of Cu Cations in the Zeolite SSZ-13. Chemistry of Materials, 2019, 31, 9582-9592.                                                                                                         | 6.7  | 19        |
| 13 | Multi-walled carbon nanotube-based composite materials as catalyst support for water–gas shift and hydroformylation reactions. RSC Advances, 2019, 9, 27732-27742.                                                                                                 | 3.6  | 16        |
| 14 | Selective Hydrogenation of CO <sub>2</sub> to CH <sub>3</sub> OH on Supported Cu Nanoparticles<br>Promoted by Isolated Ti <sup>IV</sup> Surface Sites on SiO <sub>2</sub> . ChemSusChem, 2019, 12,<br>968-972.                                                     | 6.8  | 47        |
| 15 | Dynamic equilibria in supported ionic liquid phase (SILP) catalysis: <i>in situ</i> IR spectroscopy<br>identifies [Ru(CO) <sub>x</sub> Cl <sub>y</sub> ] <sub>n</sub> species in water gas shift catalysis.<br>Catalysis Science and Technology, 2018, 8, 344-357. | 4.1  | 23        |
| 16 | Isolated Zr Surface Sites on Silica Promote Hydrogenation of CO <sub>2</sub> to CH <sub>3</sub> OH<br>in Supported Cu Catalysts. Journal of the American Chemical Society, 2018, 140, 10530-10535.                                                                 | 13.7 | 170       |
| 17 | Production of 1,6-hexanediol from tetrahydropyran-2-methanol by dehydration–hydration and hydrogenation. Green Chemistry, 2017, 19, 1390-1398.                                                                                                                     | 9.0  | 24        |
| 18 | Influence of Hydrophilicity on the Snβâ€Catalyzed Baeyer–Villiger Oxidation of Cyclohexanone with<br>Aqueous Hydrogen Peroxide. ChemCatChem, 2017, 9, 175-182.                                                                                                     | 3.7  | 28        |

PATRICK WOLF

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Correlating Synthetic Methods, Morphology, Atomic-Level Structure, and Catalytic Activity of Sn-β<br>Catalysts. ACS Catalysis, 2016, 6, 4047-4063.                                                    | 11.2 | 106       |
| 20 | Mechanistic Study on the Lewis Acid Catalyzed Synthesis of 1,3-Butadiene over Ta-BEA Using Modulated Operando DRIFTS-MS. ACS Catalysis, 2016, 6, 6823-6832.                                           | 11.2 | 54        |
| 21 | One-pot cascade transformation of xylose into γ-valerolactone (GVL) over bifunctional<br>BrÃ,nsted–Lewis Zr–Al-beta zeolite. Green Chemistry, 2016, 18, 5777-5781.                                    | 9.0  | 76        |
| 22 | Identifying Sn Site Heterogeneities Prevalent Among Snâ€Beta Zeolites. Helvetica Chimica Acta, 2016, 99,<br>916-927.                                                                                  | 1.6  | 44        |
| 23 | Insights into the Complexity of Heterogeneous Liquid-Phase Catalysis: Case Study on the Cyclization of Citronellal. ACS Catalysis, 2016, 6, 2760-2769.                                                | 11.2 | 28        |
| 24 | Silica-Grafted SnIVCatalysts in Hydrogen-Transfer Reactions. ChemCatChem, 2015, 7, 3190-3190.                                                                                                         | 3.7  | 0         |
| 25 | Silicaâ€Grafted Sn <sup>IV</sup> Catalysts in Hydrogenâ€Transfer Reactions. ChemCatChem, 2015, 7,<br>3270-3278.                                                                                       | 3.7  | 24        |
| 26 | NMR Signatures of the Active Sites in Snâ€Î²â€Zeolite. Angewandte Chemie, 2014, 126, 10343-10347.                                                                                                     | 2.0  | 46        |
| 27 | NMR Signatures of the Active Sites in Snâ€Î²â€Zeolite. Angewandte Chemie - International Edition, 2014, 53,<br>10179-10183.                                                                           | 13.8 | 157       |
| 28 | Post-synthetic preparation of Sn-, Ti- and Zr-beta: a facile route to water tolerant, highly active Lewis acidic zeolites. Dalton Transactions, 2014, 43, 4514.                                       | 3.3  | 118       |
| 29 | Combined 1,4-butanediol lactonization and transfer hydrogenation/hydrogenolysis of<br>furfural-derivatives under continuous flow conditions. Catalysis Science and Technology, 2014, 4,<br>2326-2331. | 4.1  | 52        |