
Athanassios Vassilopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10728501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14447-14452.	7.1	1,136
2	SIRT3 Is a Mitochondria-Localized Tumor Suppressor Required for Maintenance of Mitochondrial Integrity and Metabolism during Stress. Cancer Cell, 2010, 17, 41-52.	16.8	705
3	SIRT2 Maintains Genome Integrity and Suppresses Tumorigenesis through Regulating APC/C Activity. Cancer Cell, 2011, 20, 487-499.	16.8	460
4	Hepatic-Specific Disruption of SIRT6 in Mice Results in Fatty Liver Formation Due to Enhanced Glycolysis and Triglyceride Synthesis. Cell Metabolism, 2010, 12, 224-236.	16.2	433
5	Interplay among BRCA1, SIRT1, and Survivin during BRCA1-Associated Tumorigenesis. Molecular Cell, 2008, 32, 11-20.	9.7	334
6	SIRT3 Deacetylates ATP Synthase F ₁ Complex Proteins in Response to Nutrient- and Exercise-Induced Stress. Antioxidants and Redox Signaling, 2014, 21, 551-564.	5.4	159
7	Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell, 2017, 16, 1208-1218.	6.7	157
8	SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radical Biology and Medicine, 2014, 76, 163-172.	2.9	156
9	The human sirtuin family: Evolutionary divergences and functions. Human Genomics, 2011, 5, 485.	2.9	148
10	Regulation of MnSOD Enzymatic Activity by Sirt3 Connects the Mitochondrial Acetylome Signaling Networks to Aging and Carcinogenesis. Antioxidants and Redox Signaling, 2014, 20, 1646-1654.	5.4	148
11	Histone H2AX is integral to hypoxia-driven neovascularization. Nature Medicine, 2009, 15, 553-558.	30.7	120
12	Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2. Journal of Clinical Investigation, 2017, 127, 1505-1516.	8.2	101
13	BRCA1 affects global DNA methylation through regulation of DNMT1. Cell Research, 2010, 20, 1201-1215.	12.0	92
14	SIRT2-Mediated Deacetylation and Tetramerization of Pyruvate Kinase Directs Glycolysis and Tumor Growth. Cancer Research, 2016, 76, 3802-3812.	0.9	92
15	SIRT2 directs the replication stress response through CDK9 deacetylation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13546-13551.	7.1	87
16	SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis. Translational Cancer Research, 2012, 1, 15-21.	1.0	73
17	Bioenergetic and autophagic control by Sirt3Âin response to nutrient deprivation in mouse embryonic fibroblasts. Biochemical Journal, 2013, 454, 249-257.	3.7	64
18	Identification and characterization of cancer initiating cells from BRCA1 related mammary tumors using markers for normal mammary stem cells. International Journal of Biological Sciences, 2008, 4, 133-142.	6.4	63

#	Article	IF	CITATIONS
19	SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis. Cancer & Metabolism, 2014, 2, 15.	5.0	63
20	Exploring the electrostatic repulsion model in the role of Sirt3 in directing MnSOD acetylation status and enzymatic activity. Free Radical Biology and Medicine, 2012, 53, 828-833.	2.9	52
21	Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy. Free Radical Biology and Medicine, 2018, 123, 116-124.	2.9	37
22	SIRT2 deletion enhances KRAS-induced tumorigenesis <i>in vivo</i> by regulating K147 acetylation status. Oncotarget, 2016, 7, 80336-80349.	1.8	35
23	Metabolic regulation of Sirtuins upon fasting and the implication for cancer. Current Opinion in Oncology, 2013, 25, 630-636.	2.4	30
24	Sirtuin 2–mediated deacetylation of cyclin-dependent kinase 9 promotes STAT1 signaling in type I interferon responses. Journal of Biological Chemistry, 2019, 294, 827-837.	3.4	24
25	Synergistic Therapeutic Effect of Cisplatin and Phosphatidylinositol 3-Kinase (PI3K) Inhibitors in Cancer Growth and Metastasis of Brca1 Mutant Tumors. Journal of Biological Chemistry, 2014, 289, 24202-24214.	3.4	21
26	Crosstalk between the DNA damage response, histone modifications and neovascularisation. International Journal of Biochemistry and Cell Biology, 2010, 42, 193-197.	2.8	12
27	NQO1 regulates mitotic progression and response to mitotic stress through modulating SIRT2 activity. Free Radical Biology and Medicine, 2018, 126, 358-371.	2.9	12
28	Context-Dependent Roles for SIRT2 and SIRT3 in Tumor Development Upon Calorie Restriction or High Fat Diet. Frontiers in Oncology, 2020, 9, 1462.	2.8	11
29	Synergistic PIM kinase and proteasome inhibition as a therapeutic strategy for MYC-overexpressing triple-negative breast cancer. Cell Chemical Biology, 2022, 29, 358-372.e5.	5.2	10
30	Deacetylation Assays to Unravel the Interplay between Sirtuins (SIRT2) and Specific Protein-substrates. Journal of Visualized Experiments, 2016, , 53563.	0.3	1
31	Mammalian Sirtuins, Cellular Energy Regulation, and Metabolism, and Carcinogenesis. , 2018, , 141-154.		0
32	Editorial: Sirtuinome Rewiring to Hijack Cancer Cell Behavior and Hamper Resistance to Anticancer Intervention. Frontiers in Oncology, 2020, 10, 1242.	2.8	0