
## Lawrence M Schwartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10725930/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Cross Talk opposing view: Myonuclei do not undergo apoptosis during skeletal muscle atrophy.<br>Journal of Physiology, 2022, 600, 2081-2084.                                                                         | 2.9 | 8         |
| 2  | Autophagic Cell Death During Development – Ancient and Mysterious. Frontiers in Cell and<br>Developmental Biology, 2021, 9, 656370.                                                                                  | 3.7 | 33        |
| 3  | Somatic piRNAs and Transposons are Differentially Expressed Coincident with Skeletal Muscle Atrophy and Programmed Cell Death. Frontiers in Genetics, 2021, 12, 775369.                                              | 2.3 | 5         |
| 4  | Acheron/Larp6 Is a Survival Protein That Protects Skeletal Muscle From Programmed Cell Death<br>During Development. Frontiers in Cell and Developmental Biology, 2020, 8, 622.                                       | 3.7 | 9         |
| 5  | High-resolution analysis of differential gene expression during skeletal muscle atrophy and programmed cell death. Physiological Genomics, 2020, 52, 492-511.                                                        | 2.3 | 8         |
| 6  | A Heparin Binding Motif Rich in Arginine and Lysine is the Functional Domain of YKL-40. Neoplasia, 2018, 20, 182-192.                                                                                                | 5.3 | 20        |
| 7  | Type 2 diabetes impairs the ability of skeletal muscle pericytes to augment postischemic<br>neovascularization in db/db mice. American Journal of Physiology - Cell Physiology, 2018, 314,<br>C534-C544.             | 4.6 | 18        |
| 8  | Skeletal Muscles Do Not Undergo Apoptosis During Either Atrophy or Programmed Cell<br>Death-Revisiting the Myonuclear Domain Hypothesis. Frontiers in Physiology, 2018, 9, 1887.                                     | 2.8 | 52        |
| 9  | The myonuclear domain is not maintained in skeletal muscle during either atrophy or programmed cell death. American Journal of Physiology - Cell Physiology, 2016, 311, C607-C615.                                   | 4.6 | 20        |
| 10 | Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth,<br>Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.                                          | 2.7 | 154       |
| 11 | The immune signaling pathways of Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 64-74.                                                                                                          | 2.7 | 79        |
| 12 | Vascular heterogeneity and targeting: the role of YKL-40 in glioblastoma vascularization. Oncotarget,<br>2015, 6, 40507-40518.                                                                                       | 1.8 | 56        |
| 13 | Acute skeletal muscle injury induces temporal changes in NFâ€kB activation and MCPâ€l secretion in C2C12<br>myotube cultures. FASEB Journal, 2013, 27, 942.6.                                                        | 0.5 | 0         |
| 14 | Programmed Cell Death in Insects. , 2012, , 419-449.                                                                                                                                                                 |     | 5         |
| 15 | The novel lupus antigen related protein acheron enhances the development of human breast cancer.<br>International Journal of Cancer, 2012, 130, 544-554.                                                             | 5.1 | 23        |
| 16 | Acheron, a Lupus antigen family member, regulates integrin expression, adhesion, and motility in<br>differentiating myoblasts. American Journal of Physiology - Cell Physiology, 2010, 298, C46-C55.                 | 4.6 | 16        |
| 17 | Differential control of cell death and gene expression during two distinct phases of<br>hormonally-regulated muscle death in the tobacco hawkmoth Manduca sexta. Journal of Insect<br>Physiology, 2009, 55, 314-320. | 2.0 | 2         |
| 18 | Cell Death in Myoblasts and Muscles. Methods in Molecular Biology, 2009, 559, 313-332.                                                                                                                               | 0.9 | 13        |

LAWRENCE M SCHWARTZ

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Acheron, an novel LA antigen family member, binds to cask and forms a complex with id transcription factors. Cellular and Molecular Biology Letters, 2009, 14, 273-87.                                                                                      | 7.0  | 20        |
| 20 | Regulation of muscle differentiation and survival by Acheron. Mechanisms of Development, 2009, 126, 700-709.                                                                                                                                                | 1.7  | 19        |
| 21 | Acheron, a novel member of the Lupus Antigen family, is induced during the programmed cell death of skeletal muscles in the moth Manduca sexta. Gene, 2007, 393, 101-109.                                                                                   | 2.2  | 34        |
| 22 | Differential roles of HIC-5 isoforms in the regulation of cell death and myotube formation during myogenesis. Experimental Cell Research, 2007, 313, 4000-4014.                                                                                             | 2.6  | 12        |
| 23 | Identification and analysis of Hic-5/ARA55 isoforms: Implications for integrin signaling and steroid hormone action. FEBS Letters, 2005, 579, 5651-5657.                                                                                                    | 2.8  | 10        |
| 24 | Changes in contractile properties of skeletal muscle during developmentally programmed atrophy and death. American Journal of Physiology - Cell Physiology, 2002, 282, C1270-C1277.                                                                         | 4.6  | 20        |
| 25 | Drosophila sickle Is a Novel grim-reaper Cell Death Activator. Current Biology, 2002, 12, 131-135.                                                                                                                                                          | 3.9  | 112       |
| 26 | Drosophila Morgue is an F box/ubiquitin conjugase domain protein important for grim-reaper<br>mediated apoptosis. Nature Cell Biology, 2002, 4, 451-456.                                                                                                    | 10.3 | 121       |
| 27 | Chapter 18 Model cell lines for the study of apoptosis in vitro. Methods in Cell Biology, 2001, 66, 417-436.                                                                                                                                                | 1.1  | 26        |
| 28 | The RHG motifs of Drosophila Reaper and Grim are important for their distinct cell death-inducing abilities. Mechanisms of Development, 2001, 102, 193-203.                                                                                                 | 1.7  | 55        |
| 29 | Post-transcriptional regulation of gene expression during the programmed death of insect skeletal muscle. Development Genes and Evolution, 2001, 211, 397-405.                                                                                              | 0.9  | 11        |
| 30 | NOT ALL MUSCLES MEET THE SAME FATE WHEN THEY DIE. Cell Biology International, 2001, 25, 539-545.                                                                                                                                                            | 3.0  | 16        |
| 31 | Cloning and analysis of small cytoplasmic leucine-rich repeat protein (SCLP), a novel,<br>phylogenetically-conserved protein that is dramatically up-regulated during the programmed death of<br>moth skeletal muscle. , 1999, 41, 482-494.                 |      | 25        |
| 32 | Distinct cell killing properties of the Drosophila reaper, head involution defective, and grim genes.<br>Cell Death and Differentiation, 1998, 5, 930-939.                                                                                                  | 11.2 | 94        |
| 33 | Increased Production of Amyloid Precursor Protein Provides a Substrate for Caspase-3 in Dying<br>Motoneurons. Journal of Neuroscience, 1998, 18, 5869-5880.                                                                                                 | 3.6  | 128       |
| 34 | Generation of a Moveable Poly(A)+ Cassette. BioTechniques, 1997, 23, 86-88.                                                                                                                                                                                 | 1.8  | 1         |
| 35 | Identification of a phylogenetically conserved Sug1 CAD family member that is differentially expressed in the mouse nervous system. Journal of Neurobiology, 1997, 33, 877-890.                                                                             | 3.6  | 12        |
| 36 | A Member of the Phylogenetically Conserved CAD Family of Transcriptional Regulators Is Dramatically<br>Up-Regulated during the Programmed Cell Death of Skeletal Muscle in the Tobacco<br>HawkmothManduca sexta. Developmental Biology, 1996, 173, 499-509. | 2.0  | 29        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Cold thoughts of death: the role of ICE proteases in neuronal cell death. Trends in Neurosciences, 1996, 19, 555-562.                                                                                                           | 8.6  | 121       |
| 38 | Allelic variation of the polyubiquitin gene in the tobacco hawkmoth, Manduca sexta, and its<br>regulation by heat shock and programmed cell death. Insect Biochemistry and Molecular Biology,<br>1996, 26, 1037-1046.           | 2.7  | 14        |
| 39 | Imaginal cell-specific accumulation of the multicatalytic proteinase complex (proteasome) during post-embryonic development in the tobacco hornworm,Manduca sexta. , 1996, 365, 329-341.                                        |      | 13        |
| 40 | Genes that regulate apoptosis in the mouse thymus. , 1996, 60, 18-22.                                                                                                                                                           |      | 6         |
| 41 | Chapter 6 Transient Transfection Assays to Examine the Requirement of Putative Cell Death Genes.<br>Methods in Cell Biology, 1995, 46, 99-106.                                                                                  | 1.1  | 2         |
| 42 | Chapter 7 Cloning Cell Death Genes. Methods in Cell Biology, 1995, 46, 107-138.                                                                                                                                                 | 1.1  | 5         |
| 43 | Programmed cell death in the Drosophila central nervous system midline. Current Biology, 1995, 5, 784-790.                                                                                                                      | 3.9  | 89        |
| 44 | Cell death suffers a TKO. BioEssays, 1995, 17, 557-559.                                                                                                                                                                         | 2.5  | 5         |
| 45 | Ubiquitin in homeostasis, development and disease. BioEssays, 1995, 17, 677-684.                                                                                                                                                | 2.5  | 45        |
| 46 | Apolipophorin III is dramatically up-regulated during the programmed death of insect skeletal muscle and neurons. Journal of Neurobiology, 1995, 26, 119-129.                                                                   | 3.6  | 62        |
| 47 | Coordinated Induction of the Ubiquitin Conjugation Pathway Accompanies the Developmentally<br>Programmed Death of Insect Skeletal Muscle. Journal of Biological Chemistry, 1995, 270, 9407-9412.                                | 3.4  | 111       |
| 48 | Changes in the Structure and Function of the Multicatalytic Proteinase (Proteasome) during<br>Programmed Cell Death in the Intersegmental Muscles of the Hawkmoth, Manduca sexta.<br>Developmental Biology, 1995, 169, 436-447. | 2.0  | 88        |
| 49 | Ced-3/ICE: Evolutionarily conserved regulation of cell death. BioEssays, 1994, 16, 387-389.                                                                                                                                     | 2.5  | 15        |
| 50 | Essential genes that regulate apoptosis. Trends in Cell Biology, 1994, 4, 394-399.                                                                                                                                              | 7.9  | 89        |
| 51 | Identification of Genes Induced during Apoptosis in T Lymphocytes. Immunological Reviews, 1994, 142, 301-320.                                                                                                                   | 6.0  | 67        |
| 52 | Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate–early gene nur77. Nature, 1994, 367, 281-284.                                                                                  | 27.8 | 547       |
| 53 | Programmed cell death, apoptosis and killer genes. Trends in Immunology, 1993, 14, 582-590.                                                                                                                                     | 7.5  | 388       |
| 54 | Selective Repression of Actin and Myosin Heavy Chain Expression during the Programmed Death of<br>Insect Skeletal Muscle. Developmental Biology, 1993, 158, 448-455.                                                            | 2.0  | 41        |

| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Neuronal death, a tradition of dying. Journal of Neurobiology, 1992, 23, 1111-1115.                                                                                     | 3.6  | 38        |
| 56 | Insect muscle as a model for programmed cell death. Journal of Neurobiology, 1992, 23, 1312-1326.                                                                       | 3.6  | 80        |
| 57 | The role of cell death genes during development. BioEssays, 1991, 13, 389-395.                                                                                          | 2.5  | 84        |
| 58 | Characterization of a ubiquitin-fusion gene from the tobacco hawkmoth,Manduca sexta. Nucleic<br>Acids Research, 1990, 18, 6039-6043.                                    | 14.5 | 22        |
| 59 | Activation of polyubiquitin gene expression during developmentally programmed cell death. Neuron, 1990, 5, 411-419.                                                     | 8.1  | 204       |
| 60 | Endocrine regulation of terminal muscle differentiation. Insect Biochemistry, 1986, 16, 203-209.                                                                        | 1.8  | 5         |
| 61 | ENDOCRINE REGULATION OF TERMINAL MUSCLE DIFFERENTIATION. , 1986, , 203-209.                                                                                             |      | 0         |
| 62 | Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature, 1985, 314, 747-751.                                     | 27.8 | 265       |
| 63 | Hormonal control of rates of metamorphic development in the tobacco hornworm Manduca sexta.<br>Developmental Biology, 1983, 99, 103-114.                                | 2.0  | 222       |
| 64 | Ecdysteroids regulate the release and action of eclosion hormone in the tobacco hornworm,<br>Manduca sexta (L.). Journal of Insect Physiology, 1983, 29, 895-900.       | 2.0  | 146       |
| 65 | Transegmental electrical coupling between adjacent intersegemental muscles in the tobacco<br>hawkmoth (Manduca sexta). Journal of Insect Physiology, 1981, 27, 727-734. | 2.0  | 5         |
| 66 | Eclosion hormone may control all ecdyses in insects. Nature, 1981, 291, 70-71.                                                                                          | 27.8 | 136       |