
Fei Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10725697/publications.pdf Version: 2024-02-01

FEI MENC

#	Article	IF	CITATIONS
1	Conversion of Methane Facilitated by Solid Oxide Electrolysis Cells. Chemical Engineering and Technology, 2020, 43, 2007-2014.	0.9	5
2	Ruthenium Catalyzed Ethenolysis of Internal Olefin Generated from Fischer-Tropsch Process to Produce α-Olefin. Chemistry Letters, 2019, 48, 1236-1239.	0.7	1
3	Oxidative coupling of methane in solid oxide fuel cell tubular membrane reactor with high ethylene yield. Catalysis Communications, 2017, 96, 23-27.	1.6	30
4	Two-dimensional lithium diffusion behavior and probable hybrid phase transformation kinetics in olivine lithium iron phosphate. Nature Communications, 2017, 8, 1194.	5.8	85
5	Solution Growth of Screw Dislocation Driven α-GaOOH Nanorod Arrays and Their Conversion to Porous ZnGa ₂ O ₄ Nanotubes. Chemistry of Materials, 2017, 29, 7278-7287.	3.2	19
6	Amorphous MoS _x Cl _y electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy and Environmental Science, 2015, 8, 862-868.	15.6	183
7	Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis. Nano Letters, 2015, 15, 1421-1427.	4.5	933
8	Porous Two-Dimensional Nanosheets Converted from Layered Double Hydroxides and Their Applications in Electrocatalytic Water Splitting. Chemistry of Materials, 2015, 27, 5702-5711.	3.2	291
9	Solution Growth of Single Crystal Methylammonium Lead Halide Perovskite Nanostructures for Optoelectronic and Photovoltaic Applications. Journal of the American Chemical Society, 2015, 137, 5810-5818.	6.6	368
10	Twisting phonons in complex crystals with quasi-one-dimensional substructures. Nature Communications, 2015, 6, 6723.	5.8	75
11	Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials, 2015, 14, 636-642.	13.3	2,392
12	Approaching the Minimum Thermal Conductivity in Rheniumâ€Substituted Higher Manganese Silicides. Advanced Energy Materials, 2014, 4, 1400452.	10.2	74
13	Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si and Chemically Exfoliated Metallic MoS ₂ . Journal of the American Chemical Society, 2014, 136, 8504-8507.	6.6	379
14	Thermoelectric Properties of Undoped High Purity Higher Manganese Silicides Grown by Chemical Vapor Transport. Chemistry of Materials, 2014, 26, 5097-5104.	3.2	48
15	Highly active hydrogen evolution catalysis from metallic WS ₂ nanosheets. Energy and Environmental Science, 2014, 7, 2608-2613.	15.6	660
16	Vertical Heterostructures of Layered Metal Chalcogenides by van der Waals Epitaxy. Nano Letters, 2014, 14, 3047-3054.	4.5	135
17	Formation of Stacking Faults and the Screw Dislocation-Driven Growth: A Case Study of Aluminum Nitride Nanowires. ACS Nano, 2013, 7, 11369-11378.	7.3	44
18	Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation. Energy and Environmental Science, 2013, 6, 500-512.	15.6	220

Fei Meng

#	Article	IF	CITATIONS
19	Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS ₂ Nanosheets. Journal of the American Chemical Society, 2013, 135, 10274-10277.	6.6	3,022
20	Screw Dislocation Driven Growth of Nanomaterials. Accounts of Chemical Research, 2013, 46, 1616-1626.	7.6	275
21	Growth of Nanomaterials by Screw Dislocation. , 2013, , 639-664.		2
22	Large-scale solution synthesis of α-AlF3·3H2O nanorods under low supersaturation conditions and their conversion to porous β-AlF3 nanorods. Journal of Materials Chemistry, 2012, 22, 20991.	6.7	9
23	High-Capacity Lithium-Ion Battery Conversion Cathodes Based on Iron Fluoride Nanowires and Insights into the Conversion Mechanism. Nano Letters, 2012, 12, 6030-6037.	4.5	225
24	Facile Solution Synthesis of α-FeF ₃ ·3H ₂ O Nanowires and Their Conversion to α-Fe ₂ O ₃ Nanowires for Photoelectrochemical Application. Nano Letters, 2012, 12, 724-731.	4.5	198
25	Facile and mild solution synthesis of Cu ₂ O nanowires and nanotubes driven by screw dislocations. Chemical Communications, 2012, 48, 1174-1176.	2.2	90
26	The Solution Growth of Copper Nanowires and Nanotubes is Driven by Screw Dislocations. Nano Letters, 2012, 12, 234-239.	4.5	131
27	Dislocation-Driven CdS and CdSe Nanowire Growth. ACS Nano, 2012, 6, 4461-4468.	7.3	58
28	Rational Solution Growth of α-FeOOH Nanowires Driven by Screw Dislocations and Their Conversion to α-Fe ₂ O ₃ Nanowires. Journal of the American Chemical Society, 2011, 133, 8408-8411.	6.6	103
29	Controlled Synthesis of Dendritic Gold Nanostructures Assisted by Supramolecular Complexes of Surfactant with Cyclodextrin. Langmuir, 2010, 26, 7582-7589.	1.6	162
30	Facile Synthesis and One-Dimensional Assembly of Cyclodextrin-Capped Gold Nanoparticles and Their Applications in Catalysis and Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2009, 113, 13636-13642.	1.5	229